首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two kinds of polypropylene capillary membranes were used in the membrane distillation (MD). These membranes exhibited a similar morphology, but one of them has an additional low porosity layer on the internal surface of capillaries. The changes of membrane performance during MD process of tap water were investigated. The presence of low porosity layer (thickness below 1 μm) caused that the air permeability was reduced from 1.365 to 0.863 dm3/m2 s kPa, whereas the MD permeate flux was decreased only by 15%. A significantly larger decline of the flux was caused by CaCO3 deposit formed during distillation of tap water. This deposit was removed every 30–70 h by rinsing the modules with a 2–5 wt.% HCl. Unfortunately, a repetition of this operation several times resulted in a gradual decline of the maximum permeate flux (distilled water as a feed). However, the module efficiency with the membranes covered by a surface layer of low porosity was found to decreases twice as slowly. The investigations revealed that a low surface porosity does not limit the possibility of surface wetting of polypropylene membranes, but hindered the scale formation inside the pores.  相似文献   

2.
In the membrane distillation process only gaseous phase can exist in the membrane pores. The resistance to wettability of capillary polypropylene membranes has been investigated in this work. The SEM-EDS investigations revealed that the pores located up to 100 μm from the membrane surface were filled by the feed during the production of demineralized water over a period of 4500 h. However, the pores located inside the membrane wall were still dry and no feed leakage was observed. Both scaling and polypropylene degradation were indicated as the major reason for partial membrane wettability. The SEM-EDS, XRD and FTIR methods were used for investigations of polypropylene degradation, and material cracking and the presence of hydroxyl and carbonyl groups on the membrane surface has been identified. The membranes irradiated by UV light or stored up to 9 years in air were used to evaluate the membrane wetting caused by the products of polymer oxidation. The membrane samples were soaked in either water or a concentrated solution of NaCl at temperature of 343 K, and their wettability was evaluated on the basis of their variations in the air permeability. It was found that the products of polypropylene oxidation significantly accelerated the degree of wettability during the first 30 days of investigations, but after 60 days the results were similar. The soaked membrane samples wetted faster in NaCl solutions than those soaked in distilled water, which came as a result of the chemical reactions of salt with the hydroxyl and carbonyl groups found on the polypropylene surface.  相似文献   

3.
Scaling and wettability of hydrophobic membranes were studied during the membrane distillation applied for the production of fresh water from the concentrated salt solutions. The studies were performed with the use of membrane modules in which the capillary membranes from polypropylene were assembled. A saline ground water containing several sparingly soluble salts was used as a feeding solution. The presence of such compounds caused an intensive surface and internal scaling. Due to the scaling, a partial wetting of the membrane walls and the permeation of salts into distillate were observed. These phenomena were eliminated for the membranes with thicker walls when the amount of deposit was limited by a periodic rinsing of the module with water. During this study, the feed was concentrated up to the supersaturation state, which caused a salt crystallization on the membrane surface, and as a consequence, the permeate flux was reduced to zero. In this case, the internal scaling can be limited using the capillary membranes with a net covering their surface.  相似文献   

4.
The formation of deposit on the membrane surface (fouling) is one of the major operating problems of membrane distillation process. The influence of fouling on the performance of this process was investigated during the concentration of wastewater with proteins, bilge water, brines, and the production of demineralized water. The experiments were performed with polypropylene capillary membranes. The morphology and composition of the fouling layer were studied using Fourier transform infrared with diffuse reflectance spectroscopy and scanning electron microscopy coupled with the energy dispersing spectrometry. Fouling with various intensity was observed in most of the studied cases. Permeate flux decline was mainly caused by an increase in the heat resistance of the fouling layer. However in the case of non-porous deposit, a magnitude of the permeate flux was also determined by a resistance of water transport through the deposit layer. It was found the deposits were formed not only on the membrane surface, but also inside the pores. Salt crystallization in the membrane pores besides their wetting, also caused the mechanical damage of the membrane structure. The intensity of the fouling can be limited by the pretreatment of feed and a selection of the operating conditions of membrane distillation.  相似文献   

5.
Formation of precipitates containing CaSO4 during membrane distillation, applied to the concentration of aqueous salt solutions, is discussed in this paper. It was found that the concentration of SO42− ions in such solutions should not exceed 600 mg L−1 when they are subjected to concentration. However, concentration of sulphates at the level of 800 mg L−1 in the feed is permissible provided that the excess of CaSO4 is removed in a crystallizer. Crystallisation of salts, mainly CaSO4 · 2H2O, on the surface and inside the membrane was observed at higher feed concentrations, causing damage of the module. Precipitation of calcium sulphate was also observed during the production of demineralised water when high values of the water recovery coefficient (above 90 %) were used. In this case, the formed precipitate also contained CaCO3, the co-precipitation of which significantly changed the properties of the scaling layer. The precipitate containing both CaSO4 and CaCO3 was formed mainly on the membrane surface and it could easily be removed by rinsing the module with a HCl solution. Presented at the 35th International Conference of the Slovak Society of Chemical Engineering, Tatransé Matliare, 26–30 May 2008.  相似文献   

6.
Marek Gryta 《Chemical Papers》2013,67(9):1201-1209
The separation of diluted ethanol solutions and fermentation broths by membrane distillation was investigated. The influence of stream flow-rate on the ethanol flux was studied. An evaluation of the process conditions on the separation degree of ethanol was performed with the application of hydrophobic capillary membranes composed of polypropylene. By removing the alcohol via membrane distillation, it is possible to achieve a higher content of ethanol in the permeate than that in the broth. The enrichment coefficient amounted to 4–6.5, and decreased with an increase of the ethanol concentration in the broth. It was found that the flow-rate affects the value of the enrichment coefficient. A positive influence of carbon dioxide on the ethanol transport through the capillary membrane was observed. The evolution of CO2 bubbles from the broth increases the stream turbulence, probably enhancing the alcohol concentration in the layer adjacent to the membrane surface.  相似文献   

7.
The present study investigated the impact of the driving force (Δp) on the transport properties. All the experiments and calculations were performed for air-gap membrane distillation (AGMD). In the course of the experiments, it was found that an identical value of Δp could be attained by applying different values of feed and permeate temperatures. It was highlighted that constant values of water fluxes could be achieved using the constant driving force created by different temperatures. Moreover, the relation between \({J_{{{\rm{H}}_2}{\rm{O}}}}\) and 1/Tf was shown to be linear only for the \({J_{{{\rm{H}}_2}{\rm{O}}}}\) created at ΔT = Tf ? Tp > 35 K. This work’s significant finding was to highlight the limitation of the Arrhenius-type equation applied in the activation energy calculations.  相似文献   

8.
Pineapple juice is one of the popular fruit juice due to its pleasant aroma and flavor. Concentration of clarified pineapple juice was carried out by osmotic membrane distillation in a plate and frame membrane module. Concentration and temperature polarization effects are found to have significant role on flux reduction during osmotic membrane distillation process. The contribution of these polarization effects on reduction of the driving force (in turn the flux) at various process conditions such as osmotic agent concentration (2–10 mol/kg (1 molality = 1 mol/kg)), flow rate (25–100 ml/min) of feed and osmotic agent are studied. Concentration polarization has more significant effect on flux reduction when compared to temperature polarization. The experimental fluxes were in good agreement with theoretical fluxes when calculated by considering both concentration and temperature polarization effects. The pineapple juice was concentrated up to a total soluble solids content of 62°Brix at ambient temperature.  相似文献   

9.
A Polysulfone-Polyethylene glycol (PS/PEG) flat sheet membrane was prepared by phase inversion technique. Dimethyl Formamide (DMF) was utilized as a solvent and deionized water was utilized as the coagulant. Polyethylene glycol (PEG) of a various dose of PEG 2000 was utilized as the polymeric improvers and as a pore-forming agent in the casting mixture. The single-walled carbon nanotube (SWCNTs), multi-walled carbon nanotube (MWCNTs), aluminum oxide (Al2O3) and copper oxide (CuO) nanoparticles (NPs) were utilized to improve the PS/PEG membrane performances. The characterizations of the neat PS, PS/PEG, PS/PEG/Al2O3 (M1) PS-PEG/CuO (M2), PS-PEG/SWCNTs (M3) and PS/PEG/MWCNTs (M14) nanocomposite (NC) modified membranes were acquired via Fourier-transform infrared analysis (FTIR), water contact angle estimation (WCA), scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analysis (TGA). Enhanced Direct contact membrane distillation (EDCMD) unit was used for estimating the efficiency of the performance of the synthesized NC membranes via 60 °C feed synthetic water and/or saline oil field produced water samples containing salinities 123,14 mg/L. Adjusting the operational procedures and water characteristics confirmed a high salt rejection of 99.99% by the synthesized NC membranes. The maximum permeate flux achieved in the order of SWCNTs (20.91) > Al2O3 (19.92) > CuO (18.92) > MWCNT (18.20) (L/m2.h) with adjusted concentration of 0.5, 0.75, 0.75, 0.1 wt% compared with PS weight, i.e. 16%. The optimum operational circumstances comprised feed and permeate temperatures 60 °C and 20 °C, respectively. The achieved flux was 5.97 L/m2.h, using brine oil field produced water, via PS/PEG/SWCNTs membrane with 0.5 wt% of SWCNTs. Moreover, the membrane indicated sustaining performance stability in the 480 min continuous desalination testing, showing that the synthesized PS/PEG/SWCNTs NC modified membrane may be of magnificent potential to be activated in EDCMD procedure for water desalination.  相似文献   

10.
A model based on capillary theory and filtration theory has been established to simulate the process for preparation of asymmetrical tubular ceramic ultrafiltration membranes. Methods for measuring parameters in the model were proposed and adopted. The calculated membrane thickness by the model has a good consistency with the measured one. Further calculated results show that in the process of first layer imbibing slip, the gel thickness developed at a rate proportional to the square root of the casting time; however, in the process of the second layer imbibing slip, the gel thickness did not maintain the square root relationship with the casting time; in the process of the third layer imbibing slip, the relationship between the gel thickness and the casting time was more and more close to a square root when the casting time was prolonged longer and longer. The influences of Methyl Cellulose (MC) concentration in sol on the gel membrane development had also been discussed. The higher the MC concentration was the more slowly the gel membrane developed.  相似文献   

11.
Membrane distillation can only be applied on liquid mixtures which do not wet a microporous hydrophobic membrane. Solutions of inorganic material in water have such high values of surface tension (γL⩾72x10−3 N/m) that the non-wetting condition is fulfilled for a number of hydrophobic membranes. As soon as organic solutes are present in the solution, the surface tensionγL will be lowered, and if the concentration of organic material becomes too high, wetting of the membrane will occur. By means of theoretical considerations a critical solute concentration or surface tension at which a homogeneous smooth material will be wetted (gq < 90/deg) can be calculated. For a (micro)porous membranes no such theoretical relation can be derived. Therefore, a simple experimental method is described to measure the maximum allowable concentration for a (micro)porous membrane. On the basis of these measurements, the maximum allowable concentration under process conditions can be determined.  相似文献   

12.
The results of osmotic membrane distillation carried out for 2.5 years were presented in this work. The influence of the process conditions, such as temperature and brine concentration on the permeate flux, was investigated. The saturated NaCl solutions and distilled water were used as a stripping solution and feed, respectively. A continuous regeneration of stripping solution was conducted using a method of natural evaporation from the surface of Bia?ecki rings to the air surrounding the installation. The possibilities of application of Accurel PP S6/2 hydrophobic polypropylene membranes were tested. It was studied whether a saturation stripping solution does not cause scaling and wettability of membranes. It was found that most of the pores in the used membranes were non-wetted, and the salt retention over 99% was maintained during a study period. However, the obtained permeate flux was decreased by 10–20%. The SEM examinations revealed that it was caused by amorphous deposit, which was formed on the membrane surface on the brine side. The SEM–EDS analysis demonstrated that the deposit composition mainly included Si and O.  相似文献   

13.
Nature of flow on sweeping gas membrane distillation   总被引:5,自引:0,他引:5  
The process of sweeping gas membrane distillation (SGMD), with the liquid feed and the sweeping gas counterflowing in a plate and frame membrane module, has been studied. A theoretical model, which was presented in a previous paper and permitted to obtain the temperature profiles inside the fluid phases, has been developed in order to analyse the physical nature of the transmembrane water flux. Two porous hydrophobic membranes have been studied in different experimental conditions. The influence of some relevant parameters, such as the inlet and outlet temperatures or the circulation velocities of the fluids, has been studied. The experimental results have been analysed according to the model and the conclusion is that the water transport takes place, apparently, via a combined Knudsen and molecular diffusive flow mechanism. From the temperature profiles, a local temperature polarisation coefficient may be defined. From this local value, an overall one for the whole system is then defined. The new theoretical predictions have been applied to the obtained results and the accordance may be considered good.  相似文献   

14.
Direct contact membrane distillation of humic acid solutions   总被引:3,自引:0,他引:3  
Direct contact membrane distillation process has been conducted for the treatment of humic acid solutions using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their non-wettability, pore size and porosity. Water advancing and receding contact angles on the top membrane surfaces were measured. Experiments were also carried out employing pure water as feed at different mean temperatures and the water vapor permeance of each membrane was determined. Different humic acid concentrations in the feed solution, pH values and transmembrane temperature difference were tested. The direct contact membrane distillation technique is more adequate for the treatment of humic acid solutions than the applied pressure-driven separation processes, as lower membrane fouling was detected.  相似文献   

15.
In this paper results obtained with air gap membrane distillation (AGMD) using sucrose aqueous solutions are shown. The role of the relevant process parameters has been investigated experimentally (the flow rate through the cell, the feed initial concentration, the type of membrane, the air gap thickness, etc.). Equations have been proposed to estimate the intermediate temperatures for the air gap configuration. The fluxes given by different gas stagnant film diffusion models showed good agreement with the experimental results over the entire range of temperatures studied. Also a model which accounts for the thermal diffusion phenomenon was used. From the fits of the experimental flux data to the theoretical equations, the diffusion coefficient of the water vapour–air mixture, DAB, and the thermal diffusion coefficient, KT (only in the last case), were obtained and the results were analysed. For the DAB coefficient higher values than the tabulated ones have been obtained, although of the same order of magnitude, and still higher when the thermal diffusion is considered.  相似文献   

16.
Membrane distillation was used to produce demineralized water from ground water. The influence of feed water pretreatment carried out in a contact clarifier (softening with Ca(OH)2 and coagulation with FeSO4 · 7H2O) followed by filtration, on the process effectiveness was evaluated. It was found that the chemical pretreatment decreased the membrane fouling; however, the degree of water purification was insufficient because precipitation of small amounts of deposit on the membrane surface during the process operation was still observed. The permeate flux was gradually decreasing as a result of scaling. The morphology and composition of the fouling layer were studied using scanning electron microscopy coupled with energy dispersion spectrometry. The presence of significant amounts of silica, apart from calcium and magnesium, was determined in the formed deposit. The removal of foulants by heterogeneous crystallization performed inside the filter (70 mesh), assembled directly at the module inlet, was found to be a solution preventing the membrane scaling. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

17.
Polypropylene (PP) model composites were prepared using cross-linked PMMA particles with a very narrow particle size distribution as filler in order to study the micromechanical processes, which take place during deformation. Composites containing a commercial CaCO3 filler with a broad particle size distribution were also prepared and studied for comparison. The filler loading of the composites was changed from 0 to 0.3 volume fraction in 0.05 volume fraction steps. Measurements of acoustic emission signals during the elongation of PP/PMMA model composites allowed us to assign the debonding process, including its initiation, unambiguously to a well-defined section of the stress vs. strain curve. The number and intensity of the acoustic signals detected during the deformation of the matrix polymer and the composite, respectively, differed considerably, which made possible the separation of the various micromechanical deformation processes occurring in them. At low extensions the composite is deformed elastically, then debonding takes place in a very narrow deformation range, followed by the plastic deformation of the matrix. At small particle content debonding occurs at relatively low stresses, which differ significantly from the yield stress. Considerable plastic deformation of the matrix begins at the yield point. At larger filler content debonding and shear yielding occur simultaneously. Micromechanical deformation processes cannot be separated as clearly in composites prepared from the commercial CaCO3 filler with a broad particle size distribution. The debonding of particles with different size occurs in a wide deformation range because of the particle size dependence of debonding stress. The analysis of characteristic values derived from acoustic emission experiments proved that the interacting stress fields of neighboring particles influence the deformation process and that even large particles may aggregate or at least associate at large filler content.  相似文献   

18.
The separation of two systems containing minimum boiling azeotropes (acetone—methanol and tetrahydrofuran (THF)—water) was performed using extractive distillation with a heavy boiling mixed entrainer consisting of two compounds. The entrainer constituents did not form new azeotropes with each other and with the components of the original mixture. An analysis of the mixed entrainer influence on the vapor-liquid equilibrium (VLE) and relative volatility provides an understanding of the cases in which the separation by extractive distillation (ED) in the presence of the mixed entrainer revealed energy benefits over their individual constituents. New results for application of the mixed entrainer monoethanolamine (MEA)—ethylene glycol (EG) and dimethyl-sulphoxide (DMSO)—glycerol for the separation of THF—water and acetone—methanol, respectively, are presented for the first time. The individual selective agents were chosen from the efficient entrainers discussed in the literature. The calculations were performed using the platform Aspen Plus 7.3. Different extractive distillation flowsheets are provided for the zeotropic mixed agents, viz. with two or three columns. For the ED of the binary mixtures investigated, the structures of the different separation schemes, the operating parameters of the columns, and the energy consumptions are presented and compared. The application of the mixed entrainer MEA—EG fed into the ED column with pre-mixing can be recommended, providing up to 1.7 % of energy saving for acetone—methanol separation. In the case of THF—water, the mixed entrainer DMSO—glycerol provides 0.8 % of energy saving. The separate inputs of the individual constituents of the mixed entrainer led to a significant increase in the energy consumptions of the flowsheet because of the third regeneration column, hence this flowsheet cannot be recommended for use in the separation of both mixtures.  相似文献   

19.
Results of fractionation on laboratory apparatus ARN-2 are reported and generalized, and distillation curves are obtained for certain hydrocarbons. The process of primary distillation of crude oil-gas condensate with the high content of low-boiling hydrocarbons is analyzed.  相似文献   

20.
Polypropylene membranes modified with natural and organically modified montmorillonite clays were prepared. The permeability, diffusivity and solubility of helium, oxygen and nitrogen were determined for the unfilled and filled membranes over the temperature range 25-65 °C. Physical properties of polypropylene membranes were investigated using X-ray diffraction, thermogravimetric analyser, tensile testing and differential scanning calorimetry. The results showed that the filled membranes exhibit lower gas permeability compared to the unfilled polypropylene membrane. For helium, a reduced diffusivity is mainly responsible for the reduction in the permeability, in contrast, for nitrogen and oxygen, both diffusivity and solubility were reduced by the presence of fillers. The X-ray diffraction spectra showed that the incorporation of the unmodified and modified clay did not affect the crystallographic nature of polypropylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号