首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous ethanol extraction by pervaporation from a membrane bioreactor   总被引:7,自引:0,他引:7  
In order to obtain a high productivity of ethanol, a membrane bioreactor consisting of a fermentor and a pervaporation system was applied to the continuous alcoholic fermentation process. A microporous hydrophobic polytetrafluoroethylene membrane was used for pervaporation. Glucose medium and baker's yeast were used for the fermentation. Three types of continuous fermentation experiment were carried out: conventional free-cell fermentation as the standard process; a fermentation in which product ethanol was extracted continuously by pervaporation from the membrane bioreactor; and a fermentation in which ethanol was extracted by pervaporation and part of the culture broth was simultaneously removed from the fermentation system.

The fermented ethanol was continuously extracted, and simultaneously concentrated by pervaporation, from the membrane bioreactor, and the extracted ethanol concentration was 6 to 8 times higher than in the broth. A high concentration of microorganisms was realized by immobilizing cells in the membrane bioreactor. When the ethanol concentration in the broth was kept low by pervaporation, the specific rate of ethanol production increased. However, the fraction of viable cells decreased because of the accumulation of inorganic salts fed as a nutrient, of nonvolatile by-products and of aged cells, which were not extracted by pervaporation from the fermentation solution. In order to achieve a high ethanol productivity, part of the fermentation broth must be removed from the membrane bioreactor.  相似文献   


2.
The fermentation characteristics of a recombinant strain of Zymomonas mobilis ZM4(pZB5) capable of converting both glucose and xylose to ethanol have been further investigated. Previous studies have shown that the strain ZM4(pZB5) was capable of converting a mixture o 65 g/L of glucose and 65 g/L of xylose to 62 g/L of ethanol in 48 h with an overall yield of 0.46 g/g. Higher sugar concentrations (e.g., 75/75 g/L) resulted in incomplete xylose utilization (80 h). In the present study, further kinetic evaluations at high sugar levels are reported. Acetate inhibition studies and evaluation of temperature and pH effects indicated increased maximum specific uptake rates of glucose and xylose under stressed conditions with increased metabolic uncoupling. A high-productivity system was developed that involved a membrane bioreactor with cell recycling. At sugar concentrations of approx 50/50 g/L of glucose/xylose, an ethanol concentration of 50 g/L, an ethanol productivity of approx 5 g/(L·h), and a yield (Y p/s) of 0.50 g/g were achieved. Decreases in cell viability were found in this system after attainment of an initial steady state (40–60 h); a slow bleed of concentrated cells may be required to overcome this problem.  相似文献   

3.
The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280?g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65?h with an average ethanol concentration and ethanol yield of 130.12?g/L and 0.477?g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28?days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75?L. The bioreactor was operated for 26?days at a dilution rate of 0.015?h?1. The ethanol concentration of the effluent reached 130.77?g/L ethanol while an average 8.18?g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.  相似文献   

4.
Clostridium acetobutylicum strains used in most Chinese ABE (acetone–butanol–ethanol) plants favorably ferment starchy materials like corn, cassava, etc., rather than sugar materials. This is one major problem of ABE industry in China and significantly limits the exploitation of cheap waste sugar materials. In this work, cane molasses were utilized as substrate in ABE production by Clostridium saccharobutylicum DSM 13864. Under optimum conditions, total solvent of 19.80 g/L (13.40 g/L butanol) was reached after 72 h of fermentation in an Erlenmeyer flask. In a 5-L bioreactor, total solvent of 17.88 g/L was attained after 36 h of fermentation, and the productivity and yield were 0.50 g/L/h and 0.33 g ABE/g sugar consumption, respectively. To further enhance the productivity, a two-stage semicontinuous fermentation process was steadily operated for over 8 days (205 h, 26 cycles) with average productivity (stage II) of 1.05 g/L/h and cell concentration (stage I) of 7.43 OD660, respectively. The average batch fermentation time (stage I and II) was reduced to 21−25 h with average solvent of 15.27 g/L. This study provides valuable process data for the development of industrial ABE fermentation process using cane molasses as substrate.  相似文献   

5.
Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100?cm3 and the agitation rate was set to 150?rpm resulting in an overall mass transfer coefficient (K L a) of 0.108?min?1. A maximum ethanol concentration of 29.7?g/L was achieved after 120?h of fermentation; however, after 90?h of fermentation, the ethanol concentration was only slightly lower at 29.1?g/L with a yield of 0.39?g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25?g/g at 50?rpm and 0.30?g/g at 300?rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130?h of fermentation when the agitation rate was set at 50?rpm, whereas the maximum ethanol concentration was reached after only 68.5?h at 300?rpm.  相似文献   

6.
Marek Gryta 《Chemical Papers》2013,67(9):1201-1209
The separation of diluted ethanol solutions and fermentation broths by membrane distillation was investigated. The influence of stream flow-rate on the ethanol flux was studied. An evaluation of the process conditions on the separation degree of ethanol was performed with the application of hydrophobic capillary membranes composed of polypropylene. By removing the alcohol via membrane distillation, it is possible to achieve a higher content of ethanol in the permeate than that in the broth. The enrichment coefficient amounted to 4–6.5, and decreased with an increase of the ethanol concentration in the broth. It was found that the flow-rate affects the value of the enrichment coefficient. A positive influence of carbon dioxide on the ethanol transport through the capillary membrane was observed. The evolution of CO2 bubbles from the broth increases the stream turbulence, probably enhancing the alcohol concentration in the layer adjacent to the membrane surface.  相似文献   

7.
Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.  相似文献   

8.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L−1 of initial sugar concentration was used. Cell yield (Y X/S) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L−1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.  相似文献   

9.
A process for the continuous production of high purityL-lactic acid in a membrane bioreactor at 65°C has been developed. Two differentBacillus stearothermophilus strains have been tested in batch experiments. Lactic acid yields are between 60 and more than 95% of theoretical yields. The amounts of ethanol, acetate, and formate formed varied between 0 and 0.4, 0 and 0.1, and 0 and 0.5, respectively (mol/mol glucose). All byproducts are valuable and may be separated easily by rectification of the fermentation broth. Complete cell retention enables high volumetric productivity (5 g/Lh), and a minimum of growth supplements. The high temperature of 65°C allows the autoselective fermentation without problems with contamination.  相似文献   

10.
The suitability of acid- and enzymatically hydrolyzed birch hemicellulose as biotechnical raw material was studied usingCluconobacter oxydans, Fusarium oxysporum, andCandida utilis for production of xylonic acid, ethanol, and SCP, respectively. The fermentabilities of both hydrolyzates were rather similar and inhibition was evident in all cases at xylose concentrations of 257–30 g/L and higher. Potential identified fermentation inhibitors were the lignin-derived compounds sinapyl alcohol, coniferyl alcohol, vanillin, and syringaldehyde and the sugar degradation products furfural and 5-hydroxymethyl furfural.  相似文献   

11.
Fermentation of glucose-xylose mixtures to ethanol was investigated in batch and continuous experiments using immobilized recombinant Zymomonas mobilis CP4(pZB5). This microorganism was immobilized by entrapment in κ-carrageenan beads having a diameter of 1.5–2.5 mm. Batch experiments showed that the immobilized cells cofermented glucose and xylose to ethanol and that the presence of glucose improved the xylose utilization rate. Batch fermentation of rice straw hydrolysate containing 76 g/L of glucose and 33.8 g/L of xylose gave an ethanol concentration of 44.3 g/L after 24 h, corresponding to a yield of 0.46 g of ethanol/g of sugars. Comparable results were achieved with a synthetic sugar control. Continuous fermentation experiments were performed in a laboratory-scale fluidized-bed bioreactor (FBR). Glucose-xylose feed mixtures were pumped through the FBR at residence times of 2–4 h. Glucose conversion to ethanol was maintained above 98% in all experiments. Xylose conversion to ethanol was highest at 91.5% for a feed containing 50 g/L of glucose and 13 g/L of xylose at a dilution rate of 0.24/h. The xylose conversion to ethanol decreased with increasing feed xylose concentration, dilution rate, and age of the immobilized cells. Volumetric ethanol productivities in the range of 6.5–15.3 g/L·h were obtained. The improved productivities achieved in the FBR compared to other bioreactor systems can help in reducing the production costs of fuel ethanol from lignocellulosic sugars. This article has been authored by a contractor of the US go vernment under contract DE-AC05-96OR22464. Accordingly, the US government retains a nonexclusive, royaltyfree license to publish or reproduce the published form of the contribution, or allow others to do so, for US government purposes.  相似文献   

12.
Kinetics of ethanol production from carob pods extract by immobilizedS. cerevisiae cells in static and shake flask fermentation have been investigated. Shake flask fermentation proved to be a better fermentation system for the production of ethanol than static fermentation. The optimum values of ethanol concentration, ethanol productivity, ethanol yield, and fermentation efficiency were obtained at pH range 3.5–6.5 and temperature between 30–35°C. A maximum ethanol concentration (65 g/L), ethanol productivity (8.3 g/Lh), ethanol yield (0.44 g/g), and fermentation efficiency (95%) was achieved at an initial sugar concentration of 200, 150, 100, and 200 g/L, respectively. The highest values of specific ethanol production rate and specific sugar uptake rate were obtained at pH 6.5, temperature 40°C, and initial sugar concentration of 100 g/L. Other kinetic parameters, biomass concentration, biomass yield, and specific biomass production rate were maximum at pH 5.5, temperature 30°C, and initial sugar concentration 150 g/L. Under the same fermentation conditions non-sterilized carob pod extract gave higher ethanol concentration than sterilized medium. In repeated batch fermentations, the immobilizedS. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 5 d.  相似文献   

13.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   

14.
The ability ofPichia stipitis to fermentd-xylose andd-glucose in the acid-hydrolyzed hemicellulose component of sugar cane bagasse depends on the alkali used to neutralize the hydrolyzate to pH 6.5. With NH4OH and NaOH no fermentation occurred, whereas neutralization with Ca(OH)2 gave the best results (Qpmax=0.25 g/L-h; Yp/s =0.38 g/g sugar). However, the volumetric productivity was still considerably less than observed in a semisynthetic medium with a sugar composition similar to the hydrolyzate. L-arabinose was not fermented but assimilated. Sequential neutralization methods failed to improve the fermentation. Acetic acid and lignin derivatives present in the hydrolyzate were major components that inhibited the fermentation.  相似文献   

15.

The influence of different substrate concentrations on the performance of a continuous system of alcohol prduction by fermentation using a tower reactor with recycling of flocculating yeasts was investigated. All experiments were carried out using a flocculating yeast strain IR-2, isolated from fermented food, and identified asSaccharomyces cerevisiae. Cane sugar juice was used as a substrate with sugar concentrations of 160, 170, 180, 190, and 200 g/L. Constant values of dilution rate, 0.20 h?1, temperature, 30°C, and pH 3.3, were used. The performance of the reactor was observed to be efficient with high substrate concentrations. Maximum productivities of 18 g/L/h, 99% substrate conversion and ethanol concentrations of 90 g/L were obtained using 200 g/L of sugar in the feedstock. For substrate concentrations of 160 g/L, a maximum yield of 0.45 g of ethanol/g of sugar was observed or 90% of the theoretical value.

  相似文献   

16.
Candida pseudotropicalis ATCC 8619 was selected among nine strains of lactose fermenting yeast for the production of ethanol from cheese whey. The effects of three nutrients (ammonium sulfate (NH4)2SO4, dipotassium hydrogen phosphate K2HPO4, yeast extract, and a combination of them) on the ethanol yield from cheese whey were investigated. The results indicated that no addition of nutrient supplement is necessary to achieve complete lactose utilization during the cheese whey ethanol fermentation. However, addition of a small concentration (0.005% w/v) of these supplements reduced the lag period and the total fermentation time and increased the specific growth rate of the yeast. Higher concentrations (0.01 and 0.015% w/v) of ammonium sulfate and dipotassium hydrogen phosphate inhibited the cell growth and reduced lactose consumption. The highest ethanol (21.17 g/L) was achieved using yeast extract at a concentration of 0.01% w/v, given a conversion efficiency of 98.3%. No indication of alcohol inhibition was observed in this study.  相似文献   

17.
Escherichia coli KO11, in which the genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) encoding the ethanolpathway from Zymomonas mobili were inserted into the chromosome, has been shown to metabolize all major sugars that are consituents of hemicellulosic hydrolysates to ethanol, in anaerobic conditions. However, the growth and fermentation performance of this recombinant bacteria may be affected by acetic acid a potential inhibitor present in hemicellulose hydrolysates in a range of 2.0–15.0 g/L. It was observed that acetate affected the growth of E. coli KO11, prolonging the lag phase and inducing loss of biomass production and reduction of growth rate. At lower pH levels, the sensitivity to acetic acid was enhanced owing to the increased concentration of the protonated species. On the other hand, the recombinant bacteria showed a high tolerance to acetic acid regarding fermentative performance. In Luria broth medium with glucose or xylose as a single sugar source, it was observed that neither yield nor productivity was affected by the addition of acetate in a range of 2.0–12.0 g/L, suggesting some uncoupling of the growth vs ethanol production.  相似文献   

18.
An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH)2-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH)2 structure by insertion of Co2+ and Cd2+ ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v)−1, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate analysis, thus contributing for deployment of point-of-use technologies. All of the results were accurate with respect to those obtained by FTIR method at 95% confidence level.  相似文献   

19.
The continuous wine fermentation process, which employs a newly designed tapered column type bioreactor and immobilized yeast cells (Montrachet 522), was studied and its fermentation performance was compared with batch and suspended cell continuous wine fermentation systems. It was found that a stable continuous culture fermentation process could be maintained for a period of 2–3 mo when the new bioreactor system packed with immobilized yeast cells was employed. The new bioreactor containing immobilized yeast cells performed significantly better than the suspended cell culture system or batch culture. The effluent wine from the continuous fermentor system contained 7.1% (v/v) ethanol and 0.18% (w/v) residual sugar at 0.01 h-1 dilution rate. The new continuous bioreactor system also gave 17–34 times higher maximum ethanol productivity compared to the conventional batch wine fermentation. At a low dilution rate, 0.01-1, as high as 92% sugar to ethanol yield was achieved. Based on the results obtained from this study, the possibility of developing a continuous wine cooler fermentation process was demonstrated. A two-stage continuous wine fermentation system may be designed and operated. The grape juice can be fed into the first-stage that is operated at about 0.2 h-1 dilution rate and the effluent from the first-stage is fed into the second-stage continuous fermentor operated at about 0.01 h-1 dilution rate. By doing so, a wine cooler can be produced continuously and efficiently, by employing the newly designed tapered column type bioreactor charged with the immobilized yeast cells.  相似文献   

20.
Ethanol production from corn starch in a fluidized-bed bioreactor   总被引:1,自引:0,他引:1  
The production of ethanol from industrial dry-milled corn starch was studied in a laboratory-scale fluidized-bed bioreactor using immobilized biocatalysts. Saccharification and fermentation were carried out either simultaneously or separately. Simultaneous saccharification and fermentation (SSF) experiments were performed using small, uniform κ-carrageenan beads (1.5–2.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. Dextrin feeds obtained by the hydrolysis of 15% drymilled corn starch were pumped through the bioreactor at residence times of 1.5–4h. Single-pass conversion of dextrins ranged from 54–89%, and ethanol concentrations of 23–36 g/L were obtained at volumetric productivities of 9–15 g/L-h. Very low levels of glucose were observed in the reactor, indicating that saccharification was the rate-limiting step. In separate hydrolysis and fermentation (SHF) experiments, dextrin feed solutions of 150–160 g/L were first pumped through an immobilized-glucoamylase packed column. At 55°C and a residence time of 1 h, greater than 95% conversion was obtained, giving product streams of 162–172 g glucose/L. These streams were then pumped through the fluidized-bed bioreactor containing immobilized Z. mobilis. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L were achieved, resulting in an overall process productivity of 23 g/L-h. Atresidence times of 1.5 and 1 h, conversions of 75 and 76%, ethanol concentrations of 49 and 47 g/L, and overall process productivities of 19 and 25 g/L-h, respectively, were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号