首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

2.
Certain steady yawed magnetogasdynamic flows, in which the magnetic field is everywhere parallel to the velocity field, are related to certain reduced three-dimensional compressible gas flows having zero magnetic field. Under a restriction, the reduced flows are linked, by certain reciprocal relations, to a four parameter class of plane gas flows. In the instance of constant entropy an approximation method is suggested for obtaining magnetogasdynamic flows from the corresponding plane, irrotational gasdynamic flows and examples are given.

Nomenclature

magnetogasdynamic flow variables H magnetic intensity - q fluid velocity - fluid density - p pressure - s entropy - Q t, H t component of q, H in the x–y plane - w , h component of q, H perpendicular to the x–y plane reduced gasdynamic flow factor of proportionality - q* fluid velocity - * fluid density - p* pressure - Q t * =u*î+v*, w* components of q* - l arbitrary constant - A v Alfvén speed - Q t, , p fluid velocity, density, pressure of the reciprocal gas dynamic flow - L, n, k, arbitrary constants - , velocity potential, stream function - angle made by Q t, Q t * , and V with the x-axis - adiabatic gas constant - a 2=(–1)/2 constant - M Mach number - W constant value of w* - E approximate constant value of g(p) - * modified potential function - modified velocity coordinate - +i - complex potential of the irrotational flow - B arbitrary constant - V incompressible flow velocity - V modified fluid velocity - X p, Y p points on the profile  相似文献   

3.
Zusammenfassung Der Einfluß der Rotation auf das Temperaturprofil und die Wärmeübergangszahl einer turbulenten Rohrströmung im Bereich des thermischen Einlaufs wird theoretisch untersucht und mit Meßwerten verglichen. Es wird angenommen, daß das Geschwindigkeitsprofil voll ausgebildet ist. Die Rotation hat aufgrund der radial ansteigenden Zentrifugalkräfte einen ausgeprägten Einfluß auf die Unterdrückung der turbulenten Bewegung. Dadurch verschlechtert sich die Wärmeübertragung mit steigender Rotations-Reynoldszahl und die thermische Einlauflänge nimmt beträchtlich zu.
Heat transfer in an axially rotating pipe in the thermal entrance region. Part 1: Effect of rotation on turbulent pipe flow
The effects of rotation on the temperature distribution and the heat transfer to a fluid flowing inside a tube are examined by analysis in the thermal entrance region. The theoretical results are compared with experimental findings. The flow is assumed to have a fully developed velocity profile. Rotation was found to have a very marked influence on the suppression of the turbulent motion because of radially growing centrifugal forces. Therefore, a remarkable decrease in heat transfer with increasing rotational Reynolds number can be observed. The thermal entrance length increases remarkably with growing rotational Reynolds number.

Formelzeichen a Temperaturleitzahl - C n , ,C 1,C 3 Konstanten - c p spezifische Wärme bei konstantem Druck - D Rohrdurchmesser - E Funktion nach Gl. (30) - H n Eigenfunktionen - l hydrodynamischer Mischungsweg - l q thermischer Mischungsweg - Massenstrom - N=Re /Re Reynoldszahlenverhältnis - Nu Nusseltzahl - Nu Nusseltzahl für die thermisch voll ausgebildete Strömung - Pr Prandtlzahl - Pr t turbulente Prandtlzahl - Wärmestromdichte - Re * Schubspannungsreynoldszahl - R n Eigenfunktionen - Durchfluß-Reynoldszahl - Re v =D/ Rotations-Reynoldszahl - Ri Richardsonzahl - R Rohrradius - r Koordinate in radialer Richtung - dimensionslose Koordinate in radialer Richtung - T Temperatur - T Temperaturschwankung - T b bulk temperature - mittlere Axialgeschwindigkeit - v Geschwindigkeit - v Geschwindigkeitsschwankung - turbulenter Wärmestrom - dimensionsloser Wandabstand - =1/6 Konstante - Integrationsvariable - Integrationsvariable - , 1, 2, dimensionslose Temperaturen - Wärmeleitzahl - n Eigenwerte - kinematische Viskosität - Dichte - tangentiale Koordinate - , Hilfsfunktionen Indizes m in der Rohrmitte - r radial - w an der Rohrwand - z axial - 0 am Rohreintritt - 0 ohne Rotation - tangential  相似文献   

4.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

5.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

6.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

7.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

8.
If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.Nomenclature b constant, equation (34) - D pipe diameter - l mixing length - l 0 mixing length in a non-rotating pipe - N rotation rate,N=Re /Re D - p pressure - R pipe radius - Re D flow-rate Reynolds number, - Re rotational Reynolds number, Re =v w D/ - Re* Reynolds number based on the friction velocity, Re*=v*R/ - (Re*)0 Reynolds number based on the friction velocity in a non-rotating pipe - Ri Richardson number, equation (10) - r coordinate in radial direction - dimensionless coordinate in radial direction, - v r ,v ,v z time mean velocity components - v r ,v ,v z velocity fluctations - v w tangential velocity of the pipe wall - v* friction velocity, - axial mean velocity - v ZM maximum axial velocity - dimensionless radial distance from pipe wall, - y + dimensionless radial distance from pipe wall - y 1 + constant - Z rotation parameter,Z =v w/v * =N Re D /2Re* - m eddy viscosity - ( m )0 eddy viscosity in a non-rotating pipe - coefficient of friction loss - von Karman constant - 1 constant, equation (31) - density - dynamic viscosity - kinematic viscosity  相似文献   

9.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

10.
The mechanism of turbulent heat transfer in the thermal boundary layer developing in the channel flow of a drag-reducing surfactant solution was studied experimentally. A two-component laser Doppler velocimetry and a fine-wire thermocouple probe were used to measure the velocity and temperature fluctuations simultaneously. Two layers of thermal field were found: a high heat resistance layer with a high temperature gradient, and a layer with a small or even zero temperature gradient. The peak value of was larger for the flow with the drag-reducing additives than for the Newtonian flow, and the peak location was away from the wall. The profile of was depressed in a similar manner to the depression of the profile of in the flow of the surfactant solution, i.e., decorrelation between v and compared with decorrelation between u and v. The depression of the Reynolds shear stress resulted in drag reduction; similarly, it was conjectured that the heat transfer reduction is due to the decrease in the turbulent heat flux in the wall-normal direction for a flow with drag-reducing surfactant additives.List of symbols ensemble averaged value - (·)+ normalized by the inner wall variables - (·) root-mean-square value - C concentration of cetyltrimethyl ammonium chloride (CTAC) solution - c p heat capacity - D hydraulic diameter - f friction factor - H channel height - h heat transfer coefficient - j H Colburn factor - l length - Nu Nusselt number, h - Pr Prandtl number, c p/ - q w wall heated flux - Re Reynolds number, U b/ - T temperature - T b bulk temperature - T i inlet temperature - T w wall temperature - T friction temperature, q w /c p u - U local time-mean streamwise velocity - U 1 velocity signals from BSA1 - U 2 velocity signals from BSA2 - U b bulk velocity - u streamwise velocity fluctuation - u1 velocity in abscissa direction in transformed coordinates - u friction velocity, - v wall-normal velocity fluctuation - v1 velocity in ordinate direction in transformed coordinates - var(·) variance - x streamwise direction - y wall-normal direction - z spanwise direction - j junction diameter of fine-wire TC - w wire diameter of fine-wire TC - angle of principal axis of joint probability function p(u,v) - f heat conduction of fluid - w heat conduction of wire of fine-wire TC - kinematic viscosity - local time-mean temperature difference, T w T - temperature fluctuation - standard deviation - density - w wall shear stress  相似文献   

11.
Steady-shear and dynamic properties of a pooled sample of cattle synovial fluid have been measured using techniques developed for low viscosity fluids. The rheological properties of synovial fluid were found to exhibit typical viscoelastic behaviour and can be described by the Carreau type A rheological model. Typical model parameters for the fluid are given; these may be useful for the analysis of the complex flow problems of joint lubrication.The two major constituents, hyaluronic acid and proteins, have been successfully separated from the pooled sample of synovial fluid. The rheological properties of the hyaluronic acid and the recombined hyaluronic acid-protein solutions of both equal and half the concentration of the constituents found in the original synovial fluid have been measured. These properties, when compared to those of the original synovial fluid, show an undeniable contribution of proteins to the flow behaviour of synovial fluid in joints. The effect of protein was found to be more prominent in hyaluronic acid of half the normal concentration found in synovial fluid, thus providing a possible explanation for the differences in flow behaviour observed between synovial fluid from certain diseased joints compared to normal joint fluid.Nomenclature A Ratio of angular amplitude of torsion head to oscillation input signal - G Storage modulus - G Loss modulus - I Moment of inertia of upper platen — torsion head assembly - K Restoring constant of torsion bar - N 1 First normal-stress difference - R Platen radius - S (i) Geometric factor in the dynamic property analysis - t 1 Characteristic time parameter of the Carreau model - X, Y Carreau model parameters - Z () Reimann Zeta function of - Carreau model parameter - Shear rate - Apparent steady-shear viscosity - * Complex dynamic viscosity - Dynamic viscosity - Imaginary part of the complex dynamic viscosity - 0 Zero-shear viscosity - 0 Cone angle - Carreau model characteristic time - Density of fluid - Shear stress - Phase difference between torsion head and oscillation input signals - 0 Zero-shear rate first normal-stress coefficient - Oscillatory frequency  相似文献   

12.
A new type of viscometer, the Falling Needle Viscometer (FNV) has been developed. It has several advantages over the better known Falling Ball Viscometer (FBV) including better control over the trajectory and terminal velocity and a wall correction which is an integral part of the analytical solution.A Stokes' type solution for the FNV is presented which is compared with experimental measurements made on Glycerol. Experiments were also conducted with a Falling Ball Viscometer and Weissenberg Rheogoniometer using the same fluid and a comparison made among the three systems.Glycerol viscosities measured with the FNV agreed with those measured by the FBV and Weissenberg Rheogoniometer within approximately one percent. It is concluded that the Falling Needle Viscometer is a useful device that in some situations is superior to the Falling Ball Viscometer.
Das Nadelfall-Viskosimeter, eine neue Technik zur Zähigkeitsmessung
Zusammenfassung Es wurde ein neues Gerät zur Zähigkeitsmessung, as Nadelfall-Viskosimeter (FNV) entwickelt. Gegenüber dem bekannteren Kugelfall-Viskosimeter (FBV) besitzt es einige Vorteile wie eine bessere Kontrolle über die Bahnkurve und die Endgeschwindigkeit sowie eine Wandkorrektur, die Bestandteil der analytischen Lösung ist.Für das FNV wird eine Lösung vom Stokes'schen Typ vorgestellt und mit experimentellen Meßergebnissen an Glycerin verglichen. Meßwerte am selben Fluid mit Hilfe eines FBV und eines Weissenberg-Rheogoniometers erlaubten einen Vergleich zwischen den drei Systemen.Die mit dem FNV gemessenen Zähigkeiten stimmten mit den anderen Werten innerhalb etwa 1% überein. Daraus wird geschlossen, daß das FNV ein nützliches Gerät ist, das dem FBV auf einigen Gebieten überlegen ist.

Nomenclature

Roman letters a Radius of needle or sphere (cm) - b Radius of container (cm) - b + Ratio of container to needle diameterb/a - C w Wall correction factor of sphere - d Diameter of needle or sphere (cm) - ECF End correction factor of a finite needle with hemisphere tips - g Gravitational constant - G + Dimensionless number - L Total needle length minus one diameter (cm) - L Total length of needle (cm) - L + Total needle length minus one diameter over diameter-L/d - L+ Total length to diameter of needle - p Pressure (N/m2) - p + Dimensionless number - L +/b + Total needle length to diameter of system - r Radial coordinate (cm) - r + Dimensionless radial distance(r/a) - Re Reynolds number or - u Velocity in the system length direction (cm/s) - u + Dimensionless velocity (u/U ) - U t Measured terminal velocity of needle or sphere (cm/s) - U Terminal velocity of sphere in an unbounded fluid or terminal velocity of a long enough needle (cm/s) - U + Dimensionless number - T Temperature (°C) - z Coordinate in container length direction (cm) Greek letters Shear rate (l/s) - p Pressure difference - Dynamic viscosity (Ns/m2) - Kinematic viscosity (m2/s) - f Density of fluid (kg/m3) - s Density of needle or sphere (kg/m3) - + Dimensionless density Dedicated to Professor E. R. G. Eckert on the occasion of his 80th birthday  相似文献   

13.
The work presented is a wind tunnel study of the near wake region behind a hemisphere immersed in three different turbulent boundary layers. In particular, the effect of different boundary layer profiles on the generation and distribution of near wake vorticity and on the mean recirculation region is examined. Visualization of the flow around a hemisphere has been undertaken, using models in a water channel, in order to obtain qualitative information concerning the wake structure.List of symbols C p pressure coefficient, - D diameter of hemisphere - n vortex shedding frequency - p pressure on model surface - p 0 static pressure - Re Reynolds number, - St Strouhal number, - U, V, W local mean velocity components - mean freestream velocity inX direction - U * shear velocity, - u, v, w velocity fluctuations inX, Y andZ directions - X Cartesian coordinate in longitudinal direction - Y Cartesian coordinate in lateral direction - Z Cartesian coordinate in direction perpendicular to the wall - it* boundary layer displacement thickness, - diameter of model surface roughness - elevation angleI - O boundary layer momentum thickness, - w wall shearing stress - dynamic viscosity of fluid - density of fluid - streamfunction - x longitudinal component of vorticity, - y lateral component of vorticity, - z vertical component of vorticity, This paper was presented at the Ninth symposium on turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

14.
A new method for describing the rheological properties of reactive polymer melts, which was presented in an earlier paper, is developed in more detail. In particular, a detailed derivation of the equation of a first-order rheometrical flow surface is given and a procedure for determining parameters and functions occurring in this equation is proposed. The experimental verification of the presented approach was carried out using our data for polyamide-6.Notation E Dimensionless reduced viscosity, eq. (34) - E 0 Newtonian asymptote of the function (36) - E power-law asymptote of the function (36) - E = 1 the value ofE at = 1 - k degradation reaction rate constant, s–1 - k 1 rate constant of function (t), eq. (26), s–1 - k 2 rate constant of function (t), eq. (29), s–1 - K(t) residence-time-dependent consistency factor, eq. (22) - M w weight-average molecular weight - M x x-th moment of the molecular weight distribution - R gas constant - S x M x /M w - t residence time in molten state, s - t j thej-th value oft, s - T temperature, K - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xd9vqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaceWFZo% Gbaiaaaaa!3B4E!\[\dot \gamma \] shear rate, s–1 - i thei-th value of , s–1 - r =1 the value of at = 1, s–1 - * reduced shear rate, eq. (44), s–1 - dimensionless reduced shear rate, eq. (35) - viscosity, Pa · s - shear-rate and residence-time dependent viscosity, Pa · s - zero-shear-rate degradation curve - degradation curve at - t0 (t) zero-residence-time flow curve - Newtonian asymptote of the RFS - instantaneous flow curve - power-law asymptote of the RFS - 0,0 zero-shear-rate and zero-residence-time viscosity, Pa · s - E=1 value of viscosity atE=1, Pa · s - * reduced viscosity, eq. (43), Pa · s - zero-residence-time rheological time constant, s - density, kg/m3 - (t),(t) residence time functions  相似文献   

15.
A one-equation low-Reynolds number turbulence model has been applied successfully to the flow and heat transfer over a circular cylinder in turbulent cross flow. The turbulence length-scale was found to be equal 3.7y up to a distance 0.05 and then constant equal to 0.185 up to the edge of the boundary layer (wherey is the distance from the surface and is the boundary layer thickness).The model predictions for heat transfer coefficient, skin friction factor, velocity and kinetic energy profiles were in good agreement with the data. The model was applied for Re 250,000 and Tu0.07.Nomenclature µ,C D Constants in the turbulence kinetic energy equation - C 1,C 2 Constants in the turbulence length-scale equation - Skin friction coefficient atx - D Cylinder diameter - F Dimensionless flow streamwise velocityu/u e - k Turbulence kinetic energy =1/2 the sum of the squared three fluctuating velocities - K Dimensionless turbulence kinetic energyk/u e /2 - I Dimensionless temperature (T–T w )/(T T w ) - l Turbulence length-scale - l e Turbulence length-scale at outer region - Nu D Nusselt number - p Pressure - Pr Prandtl number - Pr t Turbulent Prandtl number - Pr k Constant in the turbulence kinetic energy equation - R Cylinder radius - Re D Reynolds number u D - Re x Reynolds number u x - R K Reynolds number of turbulence - T Mean temperature - T Mean temperature at ambient - T s Mean temperature at surface - Tu Cross flow turbulence intensity, - u Mean flow streamwise velocity - u Fluctuating streamwise velocity - u e Mean flow velocity at far field distance - u Mean flow velocity at ambient - u* Friction velocity - v Mean velocity normal to surface - V Dimensionless mean velocity normal to surface - x,x 1 Distance along the surface - y Distance normal to surface - Dimensionless pressure gradient parameter - Boundary layer thickness atu=0.9995u e - Transformed coordinate iny direction - Fluid molecular viscosity - t Turbulent viscosity - eff + t - µ Fluid molecular viscosity at ambient - Kinematic viscosity/ - Density - Density at ambient - w Wall shear stress - w,0 Wall shear stress at zero free stream turbulence  相似文献   

16.
The linear stability theory is used to study stability characteristics of laminar gravity-induced condensate film flow down an arbitrarily inclined wall. The coupled equations describing the velocity and temperature disturbances are solved numerically. The results show that laminar condensate films are unstable in all practical situations. Several stabilizing effects are acting on the film flow; these are: the angle of inclination, the surface tension at large wave numbers, the condensation rate at small Reynolds numbers, and to a certain extent the Prandtl number. For a vertical plate, the expected wavelengths of the disturbances are presented as functions of the Reynolds numbers of the condensate flow.
Zusammenfassung Mit Hilfe der linearen StabilitÄtstheorie werden die StabilitÄtseigenschaften laminarer Kondensatfilme an ebenen WÄnden untersucht. Die Gleichungssysteme, die Temperatur- und Geschwindigkeitsstörungen beschreiben, werden numerisch gelöst. Es zeigt sich, da\ Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einflu\ von OberflÄchenspannung, Schwerkraft und Stoffübertragung durch Kondensation werden diskutiert. Für eine senkrechte Wand werden die zu erwartenden WellenlÄngen der Störungen als Funktion der Reynoldszahlen des Kondensatfilms angegeben.

Abrreviations

Nomenclature C*=C r * + iC i * dimensional complex wave velocity - C=C*/u0 dimensionless wave velocity - cp specific heat at constant pressure - g gravitational acceleration - hn defined by Eq. (16) - hfg latent heat - k thermal conductivity - Pe=PrRe Peclet number - Pr Prandtl number - Py defined by Eq. (15) - q iaPe - Re=u0 Reynolds number - S temperature disturbance amplitude - t* dimensional time - t=t* u0/ dimensionless time - T dimensional temperature - Ts saturation temperature - Tw wall temperature - T =Ts–Tw temperature drop across liquid film - u*, v* dimensional velocity component - v=v*/u0 dimensionless velocity components - u0 dimensional surface velocity of undisturbed film flow - x*, y* dimensional coordinates - x=x*/ dimensionless coordmates - Yn functional vector defined by Eq. (20) Greek Symbols dimensionless wave number - roots of Eq. (20) - n defined by Eq. (21) - local thickness of undisturbed condensate film - * wavelength, dimensional - wavelength, dimensionless - temperature variable - kinematic viscosity of liquid - liquid density - g vapor density - surface tension - stream function disturbance amplitude - stream function - angle of inclination  相似文献   

17.
Summary The effect of viscous heating in a capillary rheometer is analysed for a power-law fluid by means of a perturbation expansion based upon a boundary-layer-core structure. This expansion is found to complement the eigenfunction series solution obtained by earlier investigators. A similar analysis is presented for the work-of-expansion effect. These two thermal effects are superimposed together with a third perturbation effect due to the pressure dependence of viscosity.On the basis of the present theory, earlier work in this area is discussed and, in some cases, apparent inaccuracies or inconsistencies are pointed out. A means is indicated for correcting data on the basis of the present theory.
Zusammenfassung Es wird der Effekt der Erwärmung einer Potenzflüssigkeit infolge viskoser Reibung in einem Kapillar-Rheometer mittels einer Störungsrechnung untersucht, die auf der Unterteilung der Strömung in eine Grenzschicht und einen Kern basiert. Diese Störungsentwicklung ergänzt eine früher von anderen Autoren gefundene Reihenentwicklung mit Hilfe von Eigenfunktionen. Eine ähnliche Untersuchung wird für die thermische Ausdehnungsarbeit durchgeführt. Diese beiden thermischen Effekte sind zusammen einem dritten Störeffekt superponiert, der von der Druckabhängigkeit der Viskosität herrührt.Aufgrund der vorgelegten Theorie werden verschiedene auf diesem Gebiet früher durchgeführte Arbeiten diskutiert, und es werden in einigen Fällen offensichtliche Ungenauigkeiten und Folgewidrigkeiten aufgedeckt. Schließlich wird eine Methode zur Korrektur von Meßdaten mit Hilfe der vorliegenden Theorie angegeben.

Nomenclature a tube radius - b ; evaluated atT 0 andp = 0 when used in perturbation expansion - C p specific heat - f - f * - h defined by eq. [15] - k thermal conductivity - L tube length - m defined by eq. [8] - m 0 m(T0, 0) - n power-law index - p pressure - Pe C p W a/k Peclet number - Pr C pa/k Prandtl number - Q volumetric flow rate - Q 0 unperturbed value ofQ in specified-p formulation - r radial coordinate - Re W a/ a Reynolds number - T temperature - T 0 inlet temperature - u radial velocity component - u 0 0 unperturbed radial velocity - w axial velocity component - w 0 /W(1 – ) unperturbed axial velocity - W Q/(a 2) average axial velocity - W 0 Q 0/(a 2) - z axial coordinate - (3n + 1)/n - * ; evaluated atT 0 andp = 0 when used in perturbation expansion - 41-n - * - (n + 1)/n - ... shear rate - 4W/a apparent shear rate - p total pressure drop - T a W 2/k characteristic temperature difference - T b total bulk-temperature rise - * T - r/a - shear viscosity - a m0 - (1 –)/ 1/3 - p/z - 0 ... unperturbed value of - z-averaged value of - µ n + 1/n - z/(a Pe) - L L/(a Pe) - mass density - w shear stress at wall - streamfunction - *T0 (absolute temperature scale) - ( )1 leading-order effect due to viscous heating - ( ) 1 * leading-order effect due to work-of-expansion Note: in specified-p formulation,W gets replaced byW 0 in definition of Pe, Re, and. With 7 figures and 7 tables  相似文献   

18.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

19.
20.
An analogue experiment is proposed to simulate flame flickering comprising a free ascending column fed on its side with a light gas (helium) emerging from a vertical slot in ambient air. The convective motion of the helium jet is considered to represent the motion of burnt gases of buoyant jet flames. The helium jet is accelerated by buoyancy effects and the flow field is similar to that of burnt gases observed for real buoyant flames. The vertical velocity profile of the steady helium jet is measured at different vertical distances. The unsteady helium jet is also studied by measuring the instability frequency as a function of ambient pressure at different injection flow rates, and by analyzing the tomography images of the helium jet. The instability morphology is the same as that observed on real buoyant flames. We conclude that this type of instability can be approximately characterized by the maximum vertical velocityu max, and the distance betweenu max in the helium ascending column andu = o in the ambient air. For this type of instability the local vorticity is proportional to which can be influenced by gravity and ambient pressure. Theoretical prediction of the instability frequency as a function of gravity and ambient pressure has been obtained, and is in good agreement with the experimental results.List of symbols C 1,C 2 constants - F instability frequency - F c critical frequency - F m the most amplified frequency - F (K, ) function defined in (11) - g gravitational acceleration - g reduced gravity acceleration g(0-*)/* - k real wave number of the disturbance - K reduced wave numberK=2k - K c reduced wave number of the critical instability mode - K m nondimensional wavenumber of the most amplified mode - L vertical characteristic length (in x direction) - P ambient pressure - u local vertical buoyant velocity (inx direction) - u max local maximum vertical velocity - v local velocity component iny direction (horizontal) - V 0 injection velocity of helium (iny direction) - x vertical distance measured from the leading edge of boundary layer - y horizontal distance measured from the exit plane of the vertical slot - Z(K, ) function defined in equation (11) Greek symbols distance betweenu max in the helium ascending column andu = o in the ambient air - - wavelength of instability - c critical wavelength - m the most amplified wavelength - * helium density at slot exit - 0 ambient air density - * helium dynamic viscosity at slot exit - v * helium kinematic viscosity at slot exit - complex number presented in disturbancee i(kx+t) - i imaginary part of , representing the amplification rate of disturbance - r real part of , where ( r /k) represents the group velocity - reduced complex number of , defined   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号