首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emission spectra of three Cd0.6Mn0.4Te/Cd0.5Mg0.5Te superlattices with Cd0.6Mn0.4Te quantum-well (QW) widths of 7, 13, and 26 monolayers, respectively, and the same thickness (46 monolayers) of the Cd0.5Mg0.5Te barriers have been studied. The QW width affects the shape and spectral position of the Mn2+ intracenter luminescence (IL) band as a result of the crystal field being dependent on the position of the manganese ion with respect to the interface. Measured in identical experimental conditions, the exciton luminescence as compared to the IL is substantially higher in intensity in a QW than in a bulk CdMnTe crystal. Some samples of superlattices and bulk crystals exhibit, in addition to the conventional IL band near 2.0 eV, a weaker band at about 1.45 eV. This band apparently derives from intracenter transitions in the Mn2+ ions in the regions where the crystal lattice has the rock-salt rather than the conventional zinc blende structure.  相似文献   

2.
The experimentally obtained intensity decay curves for the 2-eV intracenter luminescence band of Mn2+ ions in Cd0.5Mn0.5Te semiconductor solid solution at a temperature of 77 K have been simulated by the Monte Carlo method. The calculations show that the initial nonexponential behavior of the intensity decay curves at the band wings, as well as the time dependence of the band peak energy, are determined by the fast migration of excitations through the Mn2+ ion subsystem. There are more than 200 jumps per each emitted photon, and the migration rate increases by almost two orders of magnitude in comparison with the rate at 4 K. The analysis of the simulation results and the calculation based on the experimental data show the interaction between ions to be resonant. The estimate derived from the Anderson criterion suggests that the excited state is not delocalized. An increase in the migration rate with an increase in temperature significantly reduces the inhomogeneous broadening dispersion.  相似文献   

3.
The curves of intracenter luminescence decay for Mn2+ ions in the Cd0.5Mn0.5Te semiconductor solid solution, obtained in a low-temperature experiment, have been simulated by the Monte Carlo method. The features of the kinetics of the 2-eV band in the time interval where significant nonexponentiality of relaxation at different points of the emission band profile manifests itself, as well the integral kinetics and energy relaxation, have been considered. Migration of ion excitations and concentration quenching (which was previously disregarded) are considered to be the main mechanisms determining the kinetic curve formation. It was established that excitation by 2.34-eV photons leads to both selective (intracenter) and band excitation of Mn2+ ions. Comparison of the results of numerical simulation and experiment showed that the characteristic values of the migration and quenching rates (W m and W q , respectively) are close in magnitude and W q, m ≈ 0.1/τ, where τ is the lifetime at the long-wavelength band wing with the exponential kinetics. The estimated quantum yield (0.56) indicates significant influence of the concentration quenching on the 2-eV luminescence quantum yield in Cd1 ? x Mn x Te and Zn1 ? x Mn x S crystals with a high concentration of Mn2+ ions.  相似文献   

4.
For microcrystals of Zn0.6Cd0.4S with adsorbed molecules of a number of organic dyes, we have observed sensitized anti-Stokes luminescence excited by radiation with wavelengths in the range 610–750 nm and flux density 1014–1015 photons/cm2·sec. The positions of the bands in the excitation spectra for such luminescence match those of the absorption spectra for the adsorbed dye molecules, which is evidence in favor of a cooperative mechanism for its appearance. We have shown that enhancement of the anti-Stokes luminescence is possible when silver atoms and few-atom clusters appear on the Zn0.6Cd0.4S surface in addition to the dye molecules. We hypothesize that its excitation in the latter case occurs as a result of two-photon optical transitions. These transitions occur sequentially, with transfer of an electron or the electronic excitation energy from the dye molecules to silver atoms and few-atom clusters adsorbed on the surface of Zn0.6Cd0.4S, creating deep localized states in the bandgap with photoionization energies 1.80–2.00 eV. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 617–621, September–October, 2007.  相似文献   

5.
The sensitized anti-Stokes luminescence excited by radiation with wavelengths from 610 to 750 nm and flux densities of 1014–1015 quanta/(cm2·s) is detected for microcrystals of Zn 0.6 Cd 0.4 S solid solutions with adsorbed organic malachite green and methylene blue dye molecules. The position of its excitation spectra coincides with that of the absorption spectra of adsorbed dye molecules, which suggests the cooperative mechanism of its occurrence. The possibility of amplification of the anti-Stokes luminescence by means of adsorption of silver atoms and few-atomic silver clusters, in addition to the dye molecules, on the Zn 0.6 Cd 0.4 S surface is investigated. It is assumed that in the latter case, the anti-Stokes luminescence is excited as a result of two-quantum optical transitions with electron or electron excitation energy transfer from the dye molecules adsorbed on the Zn 0.6 Cd 0.4 S surface to silver atoms and few-atomic silver clusters creating deep local states with photoionization energies of 1.8–2.0 eV in the gap. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 21–26, March, 2008.  相似文献   

6.
The results of investigations of the magnetization, susceptibility, and magnetic-field-induced changes in the entropy of polycrystalline manganite (La0.6Ca0.4)0.9Mn1.1O3 near the magnetic phase transition have been presented. Magnetic measurements have been carried out at temperatures in the range from 210 to 310 K in magnetic fields of up to 9 T. The magnetocaloric effect has been revealed by measuring the magnetic-field dependences of magnetization. The magnitude of the magnetocaloric effect is compared with similar results obtained for other manganites.  相似文献   

7.
The lattice IR reflection spectra of a ZnTe/Zn0.8Cd0.2Te superlattice measured at temperatures of 300 and 10 K are analyzed. The ZnTe/Zn0.8Cd0.2Te superlattice is grown by molecular-beam epitaxy on a GaAs substrate with a ZnTe buffer layer. It is found that the lattice IR reflection spectra of the studied structure exhibit only one reflection band. Dispersion analysis of the experimental spectrum has revealed the presence of one lattice TO mode close in frequency to the mode of pure ZnTe. This result is explained by a shift in the frequency of the lattice modes of the ZnTe and Zn0.8Cd0.2Te layers of the superlattice toward each other. In turn, this shift is caused by internal elastic stresses in the superlattice due to a mismatch between the lattice parameters of the materials of these layers.  相似文献   

8.
The magnetic susceptibility χ/χ0 and the longitudinal Δρ zz 0 and transverse Δρ xx 0 magnetoresistances have been measured as functions of the hydrostatic pressure P ≤ 7 GPa at room temperature in the high-temperature ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 with a chalcopyrite structure and the Curie temperature T c = 355 K. A pressure-induced metamagnetic transition from the low-magnetization state to the high-magnetization state has been observed in Cd0.7Mn0.3GeAs2 near the magnetic ordering temperature. This transition is accompanied by the hysteresis of the magnetic susceptibility and magnetoresistance.  相似文献   

9.
The solubility of hydrogen in amorphous Mg0.6SiO2.6 at a temperature of 250°C and pressures up to 75 kbar is studied using a quenching technique. The molar ratio H2/formula unit is found to nonlinearly increase with pressure from x = 0.12 at P = 10 kbar to x = 0.303 at P = 75 kbar. An investigation of the quenched samples by Raman spectroscopy demonstrated that hydrogen dissolves in amorphous Mg0.6SiO2.6 in the form of H2 molecules. X-ray diffraction and Raman studies showed that the hydrogenation of the samples is likely to be accompanied by a phase transition in the amorphous lattice of Mg0.6SiO2.6 at P ≈ 52.5 kbar to a denser amorphous modification.  相似文献   

10.
Electron spin resonance (ESR) measurements have been performed on polycrystalline samples of Pr0.6Ca0.4Mn1-xRuxO3 (x = 0, 0.1). The substitution of Ru in the Mn-site strengthens ferromagnetic interactions due to the double exchange between the Mn3+ and Mn4+ species and super-exchange between the Ru5+ and Mn3+ species. The temperature dependence of the ESR spectra indicates development of magnetic phase separation in Pr0.6Ca0.4Mn0.9Ru0.1O3 in contrast with the un-doped sample.  相似文献   

11.
High-voltage spinel LiNi0.5Mn1.5O4 nano/microspheres with adjustable hollow structures have been fabricated based on the Kirkendall effect. The main characteristic is that the wall thickness of the hollow structure as well as the cavity size of the hollow structure can be adjusted by the different ratio of mixed precipitation agents. Especially, the diagrammatic sketch for the formation process of various LiNi0.5Mn1.5O4 materials with adjustable hollow structures is discussed. Besides, the results of electrochemical performance test show that LiNi0.5Mn1.5O4 obtained from 10:1 Na2CO3/NaOH (in mole) ratio is worth looking forward to, owing to its special hierarchical nano/microsphere and moderate hollow structures.  相似文献   

12.
The dependences of the longitudinal magnetoresistance (Δρ zz 0)(P), transverse magnetoresistance (Δρ xx 0)(P), and magnetic susceptibility (χ/χ0(P)) on hydrostatic pressure P ≤ 7 GPa in the ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 at room temperature were investigated.  相似文献   

13.
The structure of an LiNi0.4Fe0.6O2 cubic solid solution is determined using magnetic measurements and electron diffraction. It is found that this solid solution has a microinhomogeneous structure due to the formation of superparamagnetic clusters. The electron diffraction analysis of LiNi0.4Fe0.6O2 samples has revealed diffuse scattering characteristic of the substitutional short-range order in ordered solid solutions with a B1-type structure. It is shown that the short-range order is associated with the LiNiO2-type rhombohedral superstructure (space group \(R\bar 3m\)), i.e., with the redistribution of lithium and nickel atoms in the (111)B1 alternating planes. The short-range order is observed in regions with a nickel content higher than the mean nickel content corresponding to the macroscopic composition.  相似文献   

14.
This paper addresses the synthesis structural and electrochemical properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. The charge–discharge reaction of Li/LiPF6-EC–DEC/LiFe0.5Mn0.5PO4 cell carried out at the 1-C rate shows a capacity retention of 128 mAh/g. The local structure of the delithiated Li x Fe0.5Mn0.5PO4 phases have been studied by Fourier transform infrared spectroscopy and magnetometry. Spectral features indicate that the structure of the delithiated phase remains in the orthorhombic system. The compositional dependence of the magnetic moment is found to be in quantitative agreement with the theoretical value predicted for oxidation of M 2+ ions in the high spin state. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007  相似文献   

15.
Vinyl ethylene carbonate (VEC) is investigated as an electrolyte additive to improve the electrochemical performance of LiNi0.4Mn0.4Co0.2O2/graphite lithium-ion battery at higher voltage operation (3.0–4.5 V) than the conventional voltage (3.0–4.25 V). In the voltage range of 3.0–4.5 V, it is shown that the performances of the cells with VEC-containing electrolyte are greatly improved than the cells without additive. With 2.0 wt.% VEC addition in the electrolyte, the capacity retention of the cell is increased from 62.5 to 74.5 % after 300 cycles. The effects of VEC on the cell performance are investigated by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), x-ray powder diffraction (XRD), energy dispersive x-ray spectrometry (EDS), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results show that the films electrochemically formed on both anode and cathode, derived from the in situ decomposition of VEC at the initial charge–discharge cycles, are the main reasons for the improved cell performance.  相似文献   

16.
The low-temperature photoluminescence (PL) of 100 to 300-nm thick MnF2 epitaxial films of the α-PbO2-type orthorhombic structure was studied. The PL spectrum consists mainly of a broad band peaking around 575 nm and a slowly decaying long-wavelength wing. The short-wavelength part of the main band revealed relatively weak spectral features, which are due to magnon replicas of the Mn2+ excitonic line perturbed by Mg and Ca impurities. These features were found to shift toward shorter wavelengths by 12 nm relative to their position in bulk MnF2 crystals. The shift can be accounted for by a change in the crystal field acting on the Mn2+ ions in the orthorhombic phase.  相似文献   

17.
The low-frequency process of dielectric relaxation in the new lead-free compound BiLi0.6W0.4O3 prepared by conventional ceramic technology is studied. The features of dielectric relaxation are discussed in terms of a model of interaction between the domain boundaries and point defects of a crystalline lattice.  相似文献   

18.
A hydrodynamic approach based on concentration, velocity and energy conservation equations is developed and used for the simulation of the electron transport in bulk HgCdTe. Both transient and steady-state regimes are simulated using input parameters calculated with a Monte Carlo simulator. The model is validated through a comparison in excellent agreement with Monte Carlo results.  相似文献   

19.
73As(73Ge) Mössbauer emission spectroscopy is used to ascertain that the transition of the (Pb0.4Sn0.6)0.86In0.14Te solid solution to a superconducting state is accompanied by a change in electronic density at the cation sites, and spatial inhomogeneities in the Bose condensate of Cooper pairs are revealed.  相似文献   

20.
Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room temperature. Langevin’s theory incorporating the interparticle interaction was used to fit the virgin curve of particle magnetization. The low-temperature magnetization follows Bloch spin wave theory. Curie temperature derived from magnetic thermogravimetric analysis shows that Curie temperature increases with increasing particle size. Using these particles magnetic fluid is synthesized and magnetic characterization is reported. The monolayer coating of surfactant on particle surface is confirmed using thermogravimetric measurement. The same technique can be extended to study the magnetic phase transition. The Curie temperature derived using this measurement complies with the low-temperature magnetic measurement. The room-temperature and high-temperature magnetization measurements are also studied for magnetic fluid systems. The magnetic parameters derived for fluid are in good agreement with those obtained for the particle system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号