共查询到12条相似文献,搜索用时 78 毫秒
1.
本文针对乏燃料干法后处理熔盐萃取槽开展了高温LiCl-KCl熔盐和金属镉的液-液两相搅拌流动数值模拟研究。基于FLUENT中的κ-ωSST模型,采用四叶锚式搅拌桨对比了搅拌桨转速(6种条件)和两相入口速度(各5种条件)对搅拌混合和两相分离的影响,同时考察了其功率消耗。结果表明,在本研究范围内(搅拌转速50rpm~175rpm,两相入口流速0.1m·s -1~1.5 m·s -1),搅拌转速越大萃取槽内两相混合越充分,125rpm~150rpm为推荐转速值;熔盐入口流速越大萃取槽内两相混合和分离越差,在0.25 m·s -1~0.5 m·s -1之间效果较好;金属镉入口流速在0.5 m·s -1时两相混合和分离较理想。本文可为熔盐萃取槽的设计和操作条件的改进提供参考。 相似文献
2.
将手性二胺(1S,2S)-1,2-二苯基乙二胺二磺酸钠((1S,2S)-DPENDS)修饰的钌膦配合物用于催化水/有机两相体系中苯乙酮的不对称加氢. 结果表明, (1S,2S)-DPENDS和KOH的浓度对反应有很大影响,二者的协同作用使配合物的催化活性和产物的对映选择性大大提高. 对温度、压力、底物/钌的摩尔比和膦配体/钌摩尔比等反应条件进行优化后,以[RuCl2-(TPPTS)2]2为催化剂前体催化苯乙酮不对称加氢时,产物的ee值可达66.4%, 催化剂经过简单的相分离即可循环使用. 相似文献
3.
Immiscible kerosene-water two-phase flows in microchannels connected by a T-junction were numerically studied by a Lattice Boltzmann (LB) method based on field mediators.The two-phase flow lattice Boltzmann model was first validated and improved by several test cases of a still droplet.The five distinct flow regimes of the kerosene-water system,previously identified in the experiments from Zhao et al.,were reproduced.The quantitative and qualitative agreement between the simulations and the experimental dat... 相似文献
4.
建立了两段式气流床煤气化炉内气固两相流动的三维计算流体力学(CFD)模型,将气体视为连续介质,在Euler坐标系下考察气相的运动;将颗粒视为离散体系,在Lagrange坐标系下研究颗粒的运动。利用所建CFD模型对基本设计尺寸和操作条件下的两段式气流床煤气化炉内气固两相流动进行了模拟,给出了两段式气流床煤气化炉内的气固两相流动的规律和颗粒的分布规律。在此基础上,针对不同的结构(喉口直径变化)和不同的操作条件(两段气固进料量变化)进行了一系列的模拟比较。结果表明,喉口直径的变化对于炉内气固两相流动及颗粒分布有重要影响。随着喉口直径减小,喉口附近区域的气相回流增强,颗粒运动轨线变得更加曲折,颗粒分布发生明显变化。两段气固流量的改变可以明显改变炉内气固流动,随着一段反应区的气固流量增加和二段反应区气固流量减小,一段反应区内的气相回流更加显著, 二段反应区气相回流减弱,颗粒螺旋上升运动增强,反应器边壁处颗粒浓度增大,颗粒沉积现象减弱。 相似文献
5.
This paper presents an analysis of double emulsion formation through a cross junctional flow-focusing microchannel which uses an improved color gradient lattice Boltzmann method. The model with the potential to simulate a ternary system of immiscible fluids was employed. Two double emulsion formation regimes, one-step and two-step, were simulated. The effect of the inner flow rate, as well as inner and outer flow viscosity was investigated on double emulsion formation. The inner flow rate had a significant influence on the inner liquid jet detachment point in the two-step process. However, the viscosity of the inner and outer fluid considerably affected the double jet detachment point in the one-step formation. The shell thickness of a double emulsion can be adjusted by altering the inner flow rate. 相似文献
6.
Journal of Thermal Analysis and Calorimetry - The present study investigates the thermal characteristics of a proposed porous heat exchanger (PHE). This heat exchanger consists of three sections,... 相似文献
7.
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro‐osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non‐Newtonian blood flow using ACET forces is investigated in detail by modeling its multi‐physics process with hybrid boundary element method (BEM) and immersed boundary‐lattice Boltzmann method (IB‐LBM). The Carreau–Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency‐dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable. 相似文献
8.
The mathematical model of mass transfer-induced Marangoni effect is formulated. The drop surface evolution is captured by the level set method, in which the interface is represented by the embedded set of zero level of a scalar distance function defined in the whole computational domain. Numerical simulation of the Marangoni effect induced by interphase mass transfer to/from deformable single drops in unsteady motion in liquid-liquid extraction systems is performed in a Eulerian axisymmetric reference frame. The occurrence and development of the Marangoni effect are simulated, and the re- sults are in good agreement with the classical theoretical analysis and previous simulation. 相似文献
9.
Large gradients of physical variables near the channel walls are characteristic of EOF. The previous numerical simulations of EOFs with the lattice Boltzmann method (LBM) utilize uniform lattice and are not efficient, especially when the electric double layer (EDL) thickness is significantly smaller than the channel height. The efficient LBM simulation of EOF in microchannel calls for a nonuniform mesh which is dense in the EDL region and sparse in the bulk region. In this article, we formulate a radial basis function (RBF)-based interpolation supplemented LBM (ISLBM) to solve the governing equations of EOF, that is, the Poisson, Nernst–Planck, and Navier–Stokes equations, in a nonuniform mesh system. Unlike the conventional ISLBM, the RBF-ISLBM determines the prestreaming distribution functions by using the local RBF-based interpolation over circular supporting regions and is particularly suitable for nonuniform meshes. The RBF-ISLBM is validated by the EOFs in infinitely long and finitely long microchannels. The results show that the RBF-ISLBM possesses excellent robustness and accuracy. Finally, we use the RBF-ISLBM to simulate the EOFs with the hitherto highest electrokinetic parameter, κa, defined by the ratio of channel height a to EDL thickness κ−1, in LBM simulations of EOF. 相似文献
10.
The dynamics and rheology of particles in a Newtonian fluid subjected to shear are simulated using Lattice Boltzmann Method. A computationally-efficient Smoothed Profile Method is used to resolve fluid-solid interactions, and the Lennard-Jones inter-particle potential is implemented to account for inter-particle forces. The use of a bi-periodic computational domain with Lees-Edward boundary conditions allows simulation for systems consisting of a large number of particles under shear. The method is validated for single and dual particle problems and an analysis is performed for multi-particle problems under a range of shear rates and particle fractions. The introduction of particle-particle interactions, which are physically important in many engineering processes, is found to have a considerable impact on the dynamics, agglomeration and rheology. The total stress exhibits high unsteadiness primarily due to the solid component contribution, at higher particle fractions. The simulations underscore the complex interplay between shear, interparticle forces and agglomeration and the complex dependencies of the rheological properties. 相似文献
11.
Journal of Thermal Analysis and Calorimetry - Lattice Boltzmann method (LBM) was carried out to investigate the effects of magnetic field and nanofluid on the natural convection heat transfer in a... 相似文献
12.
Due to the widespread use of rarefied gas flow in micro-porous media in industrial and engineering problems, a pore-scale modeling of rarefied gas flow through two micro-porous media with fractal geometries is presented, using lattice Boltzmann method. For this purpose, square- and circular-based Sierpinski carpets with fractal geometries are selected due to their inherent behavior for real porous media. Diffusive reflection slip model is used and developed for these porous media through this study. With this respect, the planar Poiseuille flow is selected as a benchmark and validated with the literature. The effect of Knudsen number (Kn) on the permeability is investigated and compared in each geometry. It is shown that as Knudsen number increases, the permeability will increase due to the gas slippage effect on the solid blocks. In addition, it is observed that the permeability is more sensitive to the gaseous flow behavior at the slip and beginning of transition flow regimes. At last, the permeability relationship with Knudsen number is presented with a higher coefficient of determination for both fractal geometries, showing that this relation is logarithmic. 相似文献
|