首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uranium(IV)/uranium(IV) μ-sulfide complex [{(((Ad)ArO)(3)N)U}(2)(μ-S)] reacts with CS(2) to form the trithiocarbonate-bridged complex [{(((Ad)ArO)(3)N)U}(2)(μ-κ(2):κ(2)-CS(3))]. The trithiocarbonate complex can alternatively be formed in low yields from low-valent [(((Ad)ArO)(3)N)U(DME)] through the reductive cleavage of CS(2).  相似文献   

2.
The reactions between cis-Fe(dmpe)2H2 (dmpe = Me2PCH2CH2PMe2) (1) or cis-Fe(PP3)H2 (PP3 = P(CH2CH2PMe2)3) (2) and carbon dioxide (CO2), carbon disulfide (CS2), and carbonyl sulfide (COS) are investigated. At 300 K, additions of CO2 (1 atm), CS2 (2 equiv), and COS (1 atm) to 1 result in the formation of a stable transformato hydride, trans-Fe(dmpe)2(OCHO)H (3a), a trans-dithioformato hydride, trans-Fe(dmpe)2(SCHS)H (4a), and a trans-thioformato hydride, trans-Fe(dmpe)2(SCHO)H (5a), respectively. When CS2 and COS are added to cis-Fe(dmpe)2H2 at 195 K, a cis-dithioformato hydride, 4b, and a cis-thioformato hydride, 5b, respectively, are observed as the initially formed products, but there is no evidence of the corresponding cis-formato hydride upon addition of CO2 to cis-Fe(dmpe)2H2. Additions of excess CO2, CS2, and COS to 1 at lower temperatures (195-240 K) result in the formation of a trans-bis(formate), trans-Fe(dmpe)2(OCHO)2 (3b), a trans-bis(dithioformate), trans-Fe(dmpe)2(SCHS)2 (4c), and a cis-bis(thioformate), cis-Fe(dmpe)2(SCHO)2 (5c), respectively. trans-Fe(dmpe)2(SCHO)2 (5d) is prepared by the addition of excess COS at 300 K. Additions of CO2 (1 atm), CS2 (0.75 equiv), and COS (1 atm) to 2 at 300 K result in the formation of a thermally stable, geometrically constrained cis-formato hydride, cis-Fe(PP3)(OCHO)H (6a), a cis-dithioformato hydride, cis-Fe(PP3)(SCHS)H (7a), and a cis-thioformato hydride, cis-Fe(PP3)(SCHO)H (8a), respectively. Additions of excess CO2 and COS to 2 yield a cis-bis(formate), cis-Fe(PP3)(OCHO)2 (6b), and a thermally stable cis-bis(thioformate), cis-Fe(PP3)(SCHO)2 (8b), respectively. All complexes are characterized by multinuclear NMR spectroscopy, with IR spectroscopy and elemental analyses confirming structures of thermally stable complexes where possible. Complexes 3b and 5a are also characterized by X-ray crystallography.  相似文献   

3.
The previously reported uranium(III) complex [(((Ad)ArO)(3)N)U(III)(DME)] (1; Ad = adamantane, DME = 1,2-dimethoxyethane) reacts with the terminal bis-alkynes 1,7-octadiyne or 1,6-heptadiyne in C-C-coupling reactions to form the uranium(IV) vinyl complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2):η(1)-1,2-(CH)(2)-cyclohexane)] (2) and [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2):η(2)-1,2-(CH)(2)-cyclopentane)] (3). With the monoalkynes 1-hexyne or 4-(t)butyl-phenylacetylene, the complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2)(C1):η(1)(C4)-2-(n)Bu-1,3-octadiene)] (4) and [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2)(C4):η(1)(C1)-1,3-di-(p-(t)Bu-phenyl)butadiene))] (5), are formed. These are the first four examples of uranium vinyl complexes that are reported and crystallographically characterized. In addition, detailed DFT calculations are presented to establish a possible mechanism for their formation and explain the differences found for the coordination of the hydrocarbon fragments. In contrast to a previously proposed monometallic pathway for catalytic hydroamination of alkynes and alkyne dimerization involving a uranium vinyl intermediate at uranium(III) complexes, the calculations clearly support a bimetallic mechanism, since its transition states are energetically the most favored.  相似文献   

4.
Reaction of two equivalents of [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) or [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) with 1,4-dicyanobenzene leads to the formation of the novel 1,4-phenylenediketimide-bridged bimetallic organoactinide complexes [{(C(5)Me(4)Et)(2)(Cl)U}(2)(mu-{N==C(CH(3))-C(6)H(4)-(CH(3))C==N})] (8) and [{(C(5)Me(5))(2)(Br)Th}(2)(mu-{N==C(CH(3))-C(6)H(4)- (CH(3))C==N})] (9), respectively. These complexes were structurally characterized by single-crystal X-ray diffraction and NMR spectroscopy. Metal-metal interactions in these isovalent bimetallic systems were assessed by means of cyclic voltammetry, UV-visible/NIR absorption spectroscopy, and variable-temperature magnetic susceptibility. Although evidence for magnetic coupling between metal centers in the bimetallic U(IV)/U(IV) (5f(2)-5f(2)) complex is ambiguous, the complex displays appreciable electronic communication between the metal centers through the pi system of the dianionic diketimide bridging ligand, as judged by voltammetry. The transition intensities of the f-f bands for the bimetallic U(IV)/U(IV) system decrease substantially compared to the related monometallic ketimide chloride complex, [(C(5)Me(5))(2)U(Cl){-N==C(CH(3))-(3,4,5-F(3)-C(6)H(2))}] (11). Also reported herein are new synthetic routes to the actinide starting materials [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) and [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) in addition to the syntheses and structures of the monometallic uranium complexes [(C(5)Me(4)Et)(2)UCl(2)] (3), [(C(5)Me(4)Et)(2)U(CH(3))(2)] (4), [(C(5)Me(4)Et)(2)U{-N==C(CH(3))-C(6)H(4)-C==N}(2)] (10), and 11.  相似文献   

5.
The high-yield synthesis, spectroscopic and structural determination of three new uranium(IV) and thorium(IV)ate complexes supported by three different diamido ether ligands are reported. The reaction of Li2[2,6-iPr2PhN(CH2CH2)]2O (Li2[DIPPNCOCN]) with 1 equiv. of UCl4 in THF generates [DIPPNCOCN]UCl3Li(THF)2(1), while reaction in toluene/ether gives salt-free [DIPPNCOCN]UCl2.1/2C7H8(2), which was identified by paramagnetically shifted 1H NMR. Reaction of 0.5 equiv. of {[tBuNON]UCl2}2([tBuNON]=[(CH3)3CN(Si(CH3)2)]2O2-) with 3.5 equiv. LiI in toluene and a minimal amount of THF results in [tBuNON]UI3Li(THF)2(3) and is very similar in structure to 1. {[MesNON]ThCl3Li(THF)}2(4), a dimeric complex with a Th2Li2Cl6 core, is prepared by reaction of Li2[2,4,6-Me3PhN(Si(CH3)2)]2O (Li2[MesNON]) with ThCl4 in THF. The analogous reaction in toluene did not yield the salt-free complex but rather a sterically crowded diligated compound, [MesNON]2Th (5), which was also structurally characterized. Complex 5 was prepared rationally by reacting 2 equiv. Li2[MesNON] with ThCl4 in toluene. The reaction of 1 and 3 with 2 equiv. of LiCH2Si(CH3)3 generates the stable, salt-free organoactinides [DIPPNCOCN]U(CH2Si(CH3)3)2(6) and [tBuNON]U(CH2Si(CH3)3)2(7). Complex 6 was structurally characterized. These reactions illustrate the viability of ate complexes as useful synthetic precursors.  相似文献   

6.
Reduction of {2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}CrCl (3) with NaH afforded the dinuclear dinitrogen complex {[{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)]2(mu-N2)}.THF (5). Reaction carried in exclusion of dinitrogen afforded instead deprotonation of the ligand with the formation of {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF) (4). Further reduction of 5 with NaH yielded a curious dinuclear compound formulated as [{2,6-[2,6-(i-Pr)2PhN=C(CH3)]2(C5H3N)}Cr(THF)][{2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(THF)](mu-N2 H)(mu-Na)2 (6) containing two sodium atoms only bound to the dinitrogen unit and the pi systems of the two diiminepyridine ligands. Subsequent reduction with NaH triggered a complex series of events, leading to the formation of a species formulated as {2-[2,6-(i-Pr)2PhN=C(CH3)]-6-[2,6-(i-Pr)2PhNC=CH2](C5H3N)}Cr(mu-NH)][Na(THF)] (7) on the basis of crystallographic, spectroscopic, isotopic labeling, and chemical degradation experiments.  相似文献   

7.
Addition of organic azides, N(3)R (R = 2,4,6-trimethylphenyl (Mes), phenyl (Ph), 1-adamantyl (Ad)), to a solution of the uranium(III) alkyl complex, Tp*(2)U(CH(2)Ph) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) (1), results in the formation of a family of uranium(iv) imido derivatives, Tp*(2)U(NR) (2-R). Notably, these complexes were synthesized in high yields by coupling of the benzyl groups to form bibenzyl. The uranium(IV) imido derivatives, 2-Mes, 2-Ph, and 2-Ad, were all characterized by both (1)H NMR and IR spectroscopy, and 2-Mes and 2-Ad were also characterized by X-ray crystallography. In the molecular structure of 2-Mes, typical κ(3)-coordination of the Tp* ligands was observed; however in the case of 2-Ad, one pyrazole ring of a Tp* ligand has rotated away from the metal centre, forcing a κ(2)-coordination of the pyrazoles. This results in a uranium-hydrogen interaction with the Tp* B-H. Treating these imido complexes with para-tolualdehyde results in multiple bond metathesis, forming the terminal uranium(IV) oxo complex, Tp*(2)U(O), and the corresponding imine.  相似文献   

8.
Zhang C  Liu R  Zhang J  Chen Z  Zhou X 《Inorganic chemistry》2006,45(15):5867-5877
The reactivity of [Cp(2)Ln(mu-OH)(THF)]2 (Ln = Y (1), Er (2), Yb (3)) toward PhEtCCO, PhNCO, Cp3Ln, [Cp2Ln(mu-CH3)]2, and the LiCl adduct of Cp2Ln(n)Bu(THF)x was examined. In all cases, OH-centered reactivity is observed: complexes 1-3 react with PhEtCCO to form the O-H addition products [Cp2Ln(mu-eta1:eta2-O2CCHEtPh)]2 (Ln = Yb (5), Er (6), Y (7), respectively, for 1-3), whereas treatment of 1 with PhNCO affords the addition/CpH-elimination/rearrangement product [{Cp2Y(THF)}2(mu-eta2:eta2-O2CNPh)] (8), which contains an unusual PhNCO(2) dianionic ligand. Analogous compound [Cp2Ln(THF)]2(mu-eta2:eta2-O2CNPh) (Ln = Yb (9), Er (10)) and 8 can be obtained in a higher yield by treatment of [Cp2Ln(mu-OH)(THF)]2 with PhNCO followed by reaction with the corresponding Cp3Ln. However, attempts to prepare the corresponding heterobimetallic complex by reacting stoichiometric amounts of [Cp2Y(mu-OH)(THF)]2 with PhNCO followed by treating it with Cp3Yb are unsuccessful. Instead, only rearrangement products 8 and 9 are obtained. Furthermore, the reaction of 3 with [Cp2Yb(mu-CH3)]2 or Cp3Yb forms oxo-bridged compound [Cp2Yb(THF)]2(mu-O) (11), whereas the reaction of [Cp2ErCl]2 with Li(n)Bu followed by treatment with 2 affords unexpected mu-oxo lanthanocene cluster (Cp2Er)3(mu-OH)(mu3-O)(mu-Cl)Li(THF)4 (12). In contrast to 1 and 2, 3 shows a strong tendency to undergo the intermolecular elimination of CpH at room temperature, giving trinuclear species [Cp2Yb(mu-OH)]2[CpYb(THF)](mu3-O) (4). The single-crystal X-ray diffraction structures of 1, 2, and 4-12 are described. All the results offer an interesting contrast to transition- and main-metal hydroxide complexes.  相似文献   

9.
Herein we describe a convenient lab scale synthesis for pure and solvent‐free binary uranium(III) halides UCl3, UBr3, and UI3. This is achieved by the reduction of the respective uranium(IV) halides with elemental silicon in borosilicate ampoules at moderate temperature. The silicon tetrahalides SiX4 formed as a side product are utilized for the removal of excess starting material via a chemical vapor transport reaction. The syntheses introduced herein avoid the need for pure metallic uranium and are based on uranium(IV) halides synthesized from UO2 and the respective aluminum halides and purified by chemical vapor transport. These uranium(III) halides are obtained in single crystalline form. A similar reaction yields UF3 as a microcrystalline powder. However, no beneficial transport reaction occurs with this halide. Also, a higher temperature has to be applied and steel ampoules have to be used. The identities and purity of the products were checked by powder X‐ray diffraction as well as IR spectroscopy. The synthesis of UI3 enabled its crystal structure determination on single crystals for the first time. UI3 crystallizes in the PuBr3 structure type with space group type Cmcm and a = 4.3208(9), b = 13.923(3), c = 9.923(2) Å, V = 596.9(2) Å3, and Z = 4 at T = 100 K.  相似文献   

10.
The crystal structure of the complex [U(tpa)(2)]I(3), 1 (tpa = tris[(2-pyridyl)methyl]amine), has been elucidated. The complex exists as only one enantiomer in the crystal leading to the chiral space group P2(1)2(1)2(1). The coordination geometry of the metal can be described as a distorted cube. Accidental oxidation of [U(tpa)(2)]I(3) led to the isolation of the unusual mononuclear bishydroxo complex of uranium(IV) [U(tpa)(2)(OH)(2)]I(2).3CH(3)CN, 2, which was structurally characterized. The controlled reaction of [U(tpa)(2)]I(3) with water resulted in the oxidation of the metal center and led to the formation of protonated tpa and of the trinuclear U(IV) oxo complex ([U(tpa)(mu-O)I](3)(mu(3)-I))I(2), 3. The solid state and solution structures of this trimer are reported. The pathway suggested for the formation of this complex is the oxidation of the [U(tpa)(2)]I(3) complex by H(2)O to form a U(IV) hydroxo complex which then decomposes, eliminating mono-protonated tpa. The comparison with the reported reaction with water of cyclopentadienyl derivatives points to a higher reactivity toward water reduction of the bis(tpa) complex with respect to the cyclopentadienyl derivatives. The reaction of U(III) with methanol in the presence of the supporting ligand tpa leads to formation of alkoxo complexes similarly to what is found for amide or cyclopentadienyl derivatives. The monomethoxide complex [U(tpa)I(3)(OMe)], 4, has been prepared in good yield by alcoholysis of the U(III) mono(tpa) complex. The crystal structure of this complex has been determined. The reaction of [U(tpa)(2)]I(3) with 2 equiv of methanol in acetonitrile allows the isolation of the bismethoxo complex of U(IV) [U(tpa)I(2)(OMe)(2)], 5, in 35-47% yield, which has been fully characterized. To account for the oxidation of U(III) to U(IV) the suggested mechanism assumes that hydrogen is evolved in both reactions.  相似文献   

11.
The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production of UO(2), or a complex containing UO(2). Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.  相似文献   

12.
Reactions of Cp2U(NEt2)2 with the moderately acidic agents ROH and ArOH lead to the cleavage of the UNEt2 bonds and formation of di-cyclopentadienyl dialkoxides and diaryl oxides of uranium(IV). The yields of the new derivatives are strongly dependent on the bulk of the OR or OAr groups; they can undergo disproportionation or decomposition reactions with formation of tris-cyclopentadienyl derivatives of uranium(IV). With the high-sterically crowded 2,6-(But)2C6H3OH ligand only one UNEt2 bond is cleaved, with formation of the stable Cp2U(OAr)(NEt2) complex. The tris-cyclopentadienyl aryl oxides of uranium(IV) formed in the disproportionation reactions of the bis-cyclopentadienyl diaryl oxides have been also obtained by reaction of Cp3UNEt2 with ArOH.  相似文献   

13.
The copolymerization between aliphatic and aromatic mono- and di-isocyanate couples by organometallic catalysts, expecially tributyltin oxide (TBTO), was studied. Unlike the reactions between 4,4′-diphenyl methane diisocyanate (MDI) and BuNCO, hexamethylene diisocyanate (HDI) and BuNCO, and MDI and PhNCO, where low yields of copolymer were obtained, the reaction between HDI and PhNCO catalysed by TBTO gave high yields of copolymer. Detailed study showed that, in the early stages, there is considerable formation of homotrimer of PhNCO but this product disappears in the later stages of the reaction with formation of coopolymer with HDI. The extent of formation of (PhNCO)3 depended on the reaction conditions; its extent decreased sharply on working with (HDI), instead of HDI, due to lowering of the dielectric constant of the system. Study of the rate of trimerization of PhNCO alone or in the presence of HDI or (HDI)3 showed that the rate increased on passing from pure PhNCO to (HDI)3 to HDI, the rate in (HDI)3 being comparable to that of the aliphatic isocyanate groups thus permitting efficient copolymerization. Zr(OBu)4 and Pb-naphthenate gave a faster reaction but a smaller degree of copolymerization between PhNCO and HDI than when TBTO was used.  相似文献   

14.
The mass spectrometric behaviour of six 3a,5-disubstituted 1, 3-diphenyl-3a,4,5,6-tetrahydro-3H-1,2,4-triazolo[4,3-a][1, 5]benzodiazepines has been studied with the aid of mass-analyzed ion kinetic energy spectrometry and accurate mass measurements under electron impact ionization. All compounds show a tendency to eliminate (substituted) styrene molecules, aryl radicals, arylmethyl radicals or phenylnitrene (PhN:). All of the resulting fragment ions, except [M - PhN:](+.), could further undergo a reverse [2 + 3] cycloaddition. The [M - PhN:](+.) ions could further lose styrene derivatives and undergo a ring enlargement rearrangement. The molecular ions also show a tendency to eliminate a phenyl radical, and the [M - Ph](+) ions could eliminate styrene derivatives. The [M - R(1)CH = CH(2)](+.) ions could further lose NH(2) to yield stable tetracyclic 1,3-diphenyl-1,2,4-triazolo[4,3-d]phenanthridine ions, which could further lose benzonitrile, or undergo a reverse [2 + 3] cycloaddition. The molecular ions could also undergo a reverse [2 + 3] cycloaddition to produce N-phenylbenzonitrile imine ions and 2, 4-disubstituted 2,3-dihydro-1H-1,5-benzodiazepine ions, whose further fragmentations were also investigated.  相似文献   

15.
Diphenyldiazomethane effects a two-electron oxidation of the uranium(IV) monoimido complex (C5Me5)2U(=N-2,4,6-t-Bu3C6H2) to give the uranium(VI) mixed bis(imido) complex, (C5Me5)2U(=N-2,4,6-t-Bu3C6H2)(=N-N=CPh2), which undergoes a rare cyclometallation reaction upon mild thermolysis to afford a uranium(IV) bis(amide) complex that results from net addition of a C-H bond of an ortho tert-butyl group across the N=U=N core.  相似文献   

16.
The reaction of AgSCN with (Me3PhN)3[Fe(NCS)6] in DMF yields two‐dimensional polymeric, heteronuclear complexes (Me3PhN)2[Ag2Fe(SCN)6] ( 1 ) and (Me3PhN)6[Ag6Fe3(SCN)18] · CH2Cl2·DMF ( 2a ) with bridging SCN? ligands, whereas additional (Me3PhN)(SCN) leads to (Me3PhN)4[Ag2Fe(SCN)8] ( 3 ) with a one‐dimensional structure. The selenocyanato complex 2b , homologous to 2a , could also be prepared. Single crystal X‐ray structure determinations show, that the Ag+ ions in 1 and 2a are coordinated tetrahedrally by four S atoms, in 3 by one N and three S atoms of the bridging SCN? ligands; six N atoms of the SCN? or SeCN? ligands bind to Fe2+ in an octahedral arrangement.  相似文献   

17.
A mixed-valent uranium(IV,VI) diphosphonate, (H(3)O)(2)(UO(2))(3)U(H(2)O)(2)[CH(2)(PO(3))(2)](3)·6H(2)O (UC1P2S), has been synthesized under hydrothermal conditions. S-2-butanol was used to reduce uranium VI to IV. The tetravalent uranium centers adopt eight-coordinate geometries, while hexavalent uranyl units are all tetragonal bipyramids. The UV-vis-NIR spectrum of UC1P2S shows absorption features for both U(VI) and U(IV).  相似文献   

18.
The Re(IV) complex [ReCl4(mal)]2-, in the form of two slightly different salts, (AsPh4)1.5(HNEt3)0.5[ReCl4(mal)] (1a) and (AsPh4)(HNEt3)[ReCl4(mal)] (1b), and the Re(IV)-Cu(II) bimetallic complexes [ReCl4(mu-mal)Cu(phen)2].CH3CN (2), [ReCl4(mu-mal)Cu(bpy)2] (3), and [ReCl4(mu-mal)Cu(terpy)] (4) (mal=malonate dianion, AsPh4=tetraphenylarsonium cation, HNEt3=triethylammonium cation, phen=1,10-phenanthroline, bpy=2,2'-bipyridine and terpy=2,2':6',2' '-terpyridine) have been synthesized and the structures of 1a, 1b, 2, and 3 determined by single-crystal X-ray diffraction. The structures of 1a and 1b are made up of discrete [ReCl4(mal)]2- anions and AsPh4+ and HNEt3+ cations, held together by electrostatic forces and hydrogen bonds. The Re(IV) atom is surrounded by four chloride anions and a bidentate malonate group, in a distorted octahedral environment. The structure of 2 consist of neutral dinuclear units [ReCl4(mu-mal)Cu(phen)2], with the metal ions united through a bridge carboxilato. The environment of Re(IV) is nearly identical to that in the mononuclear complex, and Cu(II) is five coordinate, being surrounded by four nitrogen atoms of two bidentate phen ligands and one oxygen atom of the malonato ligand. In 3, there are also dinuclear units, [ReCl4(mu-mal)Cu(bpy)2], but the Cu(II) ions complete a distorted octahedral coordination by binding with the free malonato oxygen atom of a neighbor unit, resulting in an infinite chain. The magnetic properties of 1-4 were also investigated in the temperature range 2.0-300 K. The magnetic behavior of 1a and 1b is as expected for a Re(IV) complex with a large value of the zero-field splitting (2D ca. 110 cm(-1)). For the bimetallic complexes, the magnetic coupling between Re(IV) and Cu(II) is antiferromagnetic in 2 (J=-0.39 cm(-1)), ferromagnetic in 4 (J=+1.51 cm(-1)), and nearly negligible in 3 (J=-0.09 cm(-1)).  相似文献   

19.
Reaction mechanisms for the oxidative reactions of CO(2) and COS with [(C(5)Me(5))(2)Sm] have been investigated by means of DFT methods. The experimental formation of oxalate and dithiocarbonate complexes is explained. Their formation involve the samarium(III) bimetallic complexes [(C(5)Me(5))(2)Sm-CO(2)-Sm(C(5)Me(5))(2)] and [(C(5)Me(5))(2)Sm-COS-Sm(C(5)Me(5))(2)] as intermediates, respectively, ruling out radical coupling for the formation of the oxalate complex.  相似文献   

20.
程序升温还原法研究氧化对煤中硫形态及结构的影响   总被引:4,自引:0,他引:4  
用程序升温还原法研究了三种不同硫含量的煤被空气和HNO3氧化后含硫气体的逸出规律。结果表明,空气和HNO3氧化后,尽管煤中有机硫总量变化不大,但煤中H2S的释放量有所下降,而COS和SO2的生成量明显增加,这说明氧化作用使得煤中弱的有机硫变成S=O和SO2结构。与以往的研究结果不同的是,发现CS2的生成与FeS密切相关,同时对HNO3氧化后的煤来说,CS2的生成主要以气相中H2S和COS的反应为主。空气氧化后煤中CS2的生成量与原煤的差不多,但HNO3氧化后煤中释放出的CS2有所下降。提出通过(COS+SO2)/H2S的比值来研究煤及其中硫被氧化的程度,并对比了不同煤种及氧化后样品的气相含硫化合物发现:随变质程度的提高和煤中噻吩硫含量的增加,煤被氧化的程度下降。对同一煤种而言,HNO3的氧化程度要高于空气氧化的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号