首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering the application potentials of organic materials possessing both conducting and ferromagnetic functions in various electronic devices, an attempt was made to prepare conducting polyaniline (PANI) layered magnetic nano composite polymer particles. Two routes were used to modify magnetic Fe3O4 core particles. In one route, seeded emulsion polymerization of methyl methacrylate (MMA) was carried out in presence of nano‐sized Fe3O4 core particles. In another route, cross‐linker ethyleneglycol dimethacrylate (EGDM) was used in addition to MMA. The modified composite particles were named as Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM), respectively. Finally, seeded chemical oxidative polymerization of aniline was carried out in the presence of Fe3O4/PMMA and Fe3O4/P(MMA‐EGDM) composite seed particles to obtain Fe3O4/PMMA/PANI and Fe3O4/P(MMA‐EGDM)/PANI composite polymer particles. The modification of Fe3O4 core particles was confirmed by electron micrographs, FTIR, UV–visible spectra, X‐ray photoelectron spectra, X‐ray diffraction pattern and thermogravimetric analyses. A comparative study showed that crosslinking of intermediate shell improved the magnetic susceptibility and electrical conductivity of PANI layered magnetic nano composite particles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A simple way to obtain a conducting nanocomposite is described, and the conducting particles are characterized. Core-shell particles [polystyrene-polyaniline (PANI)] have been obtained by the dispersion process from three types of polystyrene latexes: a no-cross-linked core stabilized by a nonylphenolethoxylate (NP40) and two cross-linked cores stabilized by NP40 and a mixture NP40/Surfamid (a surfactant bearing an amide group). The surface of these particles has been extensively characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and scanning electron microscopy. A maximum coverage of 94% was obtained for the high PANI content as revealed by XPS analysis. A better coverage was obtained for the cross-linked polystyrene latex stabilized by the Surfamid. The amide group of this surfactant allows the H-bonding formation with the PANI backbone and, thus, improves the conductivity. It was shown that a uniform coverage of the core particles was not required to ensure a good conductivity.  相似文献   

3.
This review of the current status of conducting polymers will focus on recent progress which demonstrates that the initial promise of the late 1970's has become reality. Conducting polymers are now available as materials with truly unique properties: They combine the important electronic and optical properties of semiconductors and metals with the attractive mechanical properties and processing advantages of polymers. Conducting polymer blends based upon polyaniline (PANI) are a new class of materials in which the threshold for the onset of electrical conductivity (σ) can be reduced to volume fractions below 1%, well below that required for classical percolation (16% by volume for globular conducting objects dispersed in an insulating matrix in three dimensions). The origin of this remarkably low threshold for the onset of electrical conductivity is the self-assembled network morphology of the PANI polyblends which forms during the course of liquid-liquid separation. Since the average density of the conducting network near threshold is small, the conductivity increases smoothly and continuously over many orders of magnitude as the concentration of conducting polymer increases above threshold. The low percolation threshold and the continuous increase of σ(f) above threshold are particularly important; as a result of this combination, conducting polyblends can be reproducibly fabricated with controlled levels of electrical conductivity while retaining the desired mechanical properties of the matrix polymer.1-3)  相似文献   

4.
As an alternative method for processing polyaniline (PANI) from its conducting (protonated) state, vacuum casting of PANI from a methanesulfonic acid (MSA) solution provided films with electrical conductivity values of about 130–150 S/cm. In addition, we similarly prepared blended films of PANI · MSA and poly(p‐phenylene benzobisthiazole) (PBZT). This process eliminated the need for a subsequent protonation step and had the additional advantage that the conjugated PBZT may provide alternative conducting pathways. Conductivity values of the composite films ranged from 100 pS/cm to 124 S/cm, and the films displayed critical concentration behavior with a PANI threshold concentration of 2.75% and a critical exponent of 4. Transmission electron micrographs displayed phase‐separated regions with PANI forming a continuous network at high concentrations. Thermogravimetric analysis results demonstrated the thermal and thermooxidative stability advantage of the blends due to the PBZT component. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2539–2548, 2001  相似文献   

5.
A method is described to impart flexibility and mechanical strength to conducting polyaniline by polymerizing aniline on fabrics and on cellulose papers. The study indicates that these conducting fabrics offer 16–18 dB of shielding effectiveness for the control of electromagnetic interference (EMI) up to a frequency of 103 MHz.  相似文献   

6.
Micron-sized composite particles consisting of spherical polymer cores and metallic copper shells were prepared. Basic cupric carbonate was coated on sulfonated polymer particles by pH-controlled hydrolysis of cupric nitrate. The thickness of the coating layer was controlled by the number of polymer particles. Addition of CO2 during aging increased the shell thickness. Electrically conducting particles were obtained by reduction with hydrogen of the composite particles obtained. Received: 9 August 2000 Accepted: 17 July 2001  相似文献   

7.
8.

Abstract  

Due to their wide applications as insecticides, pesticides, chemical warfare agents, etc., detection of organophosphorus compounds is of great importance. This paper deals with application of polyaniline conducting polymer (PANi) as a sensor material for detection of some agricultural organophosphorus compounds that are commonly used as insecticides and pesticides. The compounds employed in this investigation are dichlorvos, trichlorophon, and chlorpyrifos. The effects of some important parameters such as concentration, thickness of the polymer film, etc., on electrical conductivity and conductivity stability for these compounds have also been investigated. In situ electrical conductivity measurements were performed using a standard direct-current (DC) four-point probe technique. It was found that adsorption and desorption of these compounds on PANi film cause measurable change in the resistance of conducting polymers.  相似文献   

9.
We report novel zinc ion conducting polymer gel electrolytes (PGEs) based on non-volatile room temperature ionic liquids. The PGEs consist of an ionic liquid, with a zinc salt dissolved in it, blended with a polymer matrix, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). The resultant electrolyte membranes are freestanding, translucent, flexible and elastic, with excellent mechanical integrity and strength. They possess exceptional thermal stability, exhibit essentially no weight loss under dynamic vacuum or upon heating to 200 °C, and remain the same gel phase in wide temperature ranges, with ionic conductivities on the order of 10−3 S/cm at room temperature, 10−4 S/cm at −20 °C and 4–5 × 10−3 S/cm at 80 °C. Electrochemical tests show that zinc ions are mobile in the membranes and zinc metal is capable of dissolution into and deposition from the membranes. The membranes also exhibit wide electrochemical stability windows. The results of this study demonstrate the promise of developing PGEs based on ionic liquids for potential application in next-generation non-aqueous zinc battery systems.  相似文献   

10.
The aniline dimer, N-(4-aminophenyl)aniline has been polymerized cleanly under mild conditions to obtain an emeraldine base form of polyaniline using [MeB(3-(Mes)Pz)3]CuCl as the catalyst and H2O2 as the oxidant, while the subsequent acidification of the emeraldine base gives the conducting emeraldine salt form of polyaniline.  相似文献   

11.
This paper presents a review on a series of recent investigations focused on the understanding of the role of various factors for the number, size, and location of the metal particles electrodeposited in conducting polymer (CP) layers. It is demonstrated that the initial oxidation state of the CP layer and its surface and bulk structure play an important role for the location of the metal particles. The use of metal anion complexes instead of the corresponding metal cations presents a helpful tool for affecting the location and number of metal crystals. The involvement of special metal/polymer interactions in the metal electrocrystallization process is another way for influencing the metal deposit. An alternative to the electrodriven deposition is the electroless metal precipitation based on the reducing ability of the CP layers. This approach results in metal particles deposition at the polymer surface and may be effectively controlled through parameters such as CP reduction charge, dipping time, and concentration of the metal-plating solution.  相似文献   

12.
A biosensor with improved performance was developed through the immobilization of horseradish peroxidase (HRP) onto electropolymerized polyaniline (PANI) films doped with carbon nanotubes (CNTs). The effects of electropolymerization cycle and CNT concentration on the response of the biosensor toward H2O2 were investigated. It was found that the application of CNTs in the biosensor system could increase the amount and stability of the immobilized enzyme, and greatly enhanced the biosensor response. Compared with the biosensor without CNTs, the proposed biosensor exhibited enhanced stability and approximately eight-fold sensitivity. A linear range from 0.2 to 19 μM for the detection of H2O2 was observed for the proposed biosensor, with a detection limit of 68 nM at a signal-to-noise ratio of 3 and a response time of less than 5 s.  相似文献   

13.
A composite of polyaniline (PANI) with both conducting and ferromagnetic functions was synthesized by a chemical method proposed by the authors. For the electrical properties, its room-temperature conductivity was measured to be about 10−1 S/cm when doped with 1.0M HCl, and it is independent of the preparation conditions, such as reaction temperature and concentration of FeSO4 solution. Temperature dependence of the conductivity of the composites at temperature between 77 and 450 K is controlled by thermal activation and dedoping processes, which result in the decrease of conductivity with increase of temperature as T > 320 K. For their magnetic properties, unusual ferromagnetic properties with high saturated magnetization (M2) and lower coercive force (Hc = 0) were observed. An effect of the preparation conditions on the ferromagnetic properties of composites was observed. The higher the reaction temperature and the concentration of FeSO4 solution, the higher the saturated magnetization was observed. No hysteresis feature (i.e. Hc = 0) for any PANI composites synthesized in this paper was observed, and this is independent of the preparation conditions. This may be attributed to the nanometer size of the magnetic particles existing in composites. Thus, it suggests that the doping of PANI leads to electrical properties of composites, whereas the nanocrystalline magnetic particles (Fe3O4) are responsible for the observed ferromagnetic properties of PANI composites. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2129–2136, 1997  相似文献   

14.
A novel strategy was developed in order to prepare various micro/nanostructured polyanilines (PANI) on polymer substrates. The strategy involved two main steps, i.e., a grafting polymerization of acrylate acid (AA) onto the surface of a polypropylene (PP) film and subsequently an oxidative polymerization of aniline on the grafted surface. By tuning the conformation of the surface-grafted poly acrylate acid (PAA) brushes, as well as the ratio of AA to aniline, the shape of the PANIs fixated onto the surfaces of the polymer substrate could be controlled to go from spherical particles to nanowires and eventually to nanoribbons. In these structures, the PAA brushes not only acted as templates but also as dopants of PANI, and thereby, the nanostructured PANIs could be strongly bonded with the substrate. In addition, the surface of the PP films grafted with polyaniline nanowires and nanoribbons displayed superhydrophobicity with contact angles for water of approxiamtely 145 and 151 degrees , respectively.  相似文献   

15.
A poly(o-methoxyaniline) (POMA)/DNA [weight fraction of DNA (W(DNA)) = 0.45] hybrid was prepared by mixing their solutions in sterilized double distilled water. The solution turned green upon aging for a longer time, and the doping of POMA by DNA was complete after about 15 d of aging. The doping was confirmed from the UV-vis spectra where the 599 nm peak of POMA(EB) disappeared and a new peak for a pi to localized polaron band-transition appeared. With increasing aging time the new peak gradually shifted from 674 nm at 3 h to 820 nm at 15 d of mixing and thereafter it remained constant. The absence of a free carrier tail in the UV-vis spectra indicated a coiled structure of POMA in the complex. Circular dichroism spectra of the hybrid solution indicated that the DNA conformation (double helical structure) remained unchanged in the hybrid. The SEM micrograph of the freeze-dried hybrid showed a needle-like morphology of the DNA dispersed in a polymer matrix and it was completely different from the fibrillar network morphology of pure DNA in the solid state. The TEM micrograph indicated a homogeneous dispersion of DNA fibrils in the POMA matrix. The melting temperature of the POMA-DNA hybrid showed an increase compared to that of pure DNA by 5 degrees C, probably caused by an electrostatic interaction between the DNA anion and the POMA radical cation generated in the doping process. WAXS investigations revealed that the DNA crystal structure remained unchanged in the hybrid whereas the POMA crystal structure might be lost. An FT-IR study suggested that interaction occurred between the phosphoric acid group of DNA and a nitrogen atom of POMA through proton transfer from the OH group of the former. A schematic model of the POMA-DNA complex randomly anchoring POMA chains with the DNA molecule was proposed. The dc conductivity of the POMA-DNA complex was found to be ca. 10(-7) S . cm(-1). Hence, this work describes a procedure for making a DNA-conducting polymer hybrid without changing the conformation and structure of DNA. [Diagram: see text]  相似文献   

16.
17.
Planar organic electrochemical transistors (OECTs) using PEDOT:PSS as the channel material and nanostructured carbon (nsC) as the gate electrode material and poly(sodium 4‐styrenesulfonate (PSSNa) gel as the electrolyte were fabricated on flexible polyethylene terephthalate (Mylar®) substrates. The nsC was deposited at room‐temperature by supersonic cluster beam deposition (SCBD). Interestingly, the OECT acts as a hybrid supercapacitor (to give a device that we indicate as transcap). The energy storage ability of transcaps has been studied with two cell configurations: one featuring PEDOT:PSS as the positive electrode and nsC as the negative electrode and another configuration with reversed electrode polarity. Potentiostatic charge/discharge studies show that both supercapacitors show good performance in terms of voltage retention, in particular, when PEDOT:PSS is used as the positive electrode. Galvanostatic charge–discharge characteristics show typical symmetric triangular shape, indicating a nearly ideal capacitive behavior with a high columbic efficiency (close to 100%). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 96–103  相似文献   

18.
The new conjugated polyacetylene derivative dehydrated poly(4-hydroxy-4-phenyl-1-butyne) [dehydrated poly(HPB)] was synthesized from poly(4-hydroxy-4-phenyl-1-butyne) [poly(HPB)], which was obtained by the polymerization of 4-hydroxy-4-phenyl-1-butyne. The resulting dehydrated poly(HPB) was soluble in common organic solvents. The dehydrated poly(HPB) was found to have extended conjugated polyene structure. The dehydrated poly(HPB) was thermally stable up to 300°C. The electrical conductivity of I2-doped dehydrated poly(HPB) was 10−2 S cm−1. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 949–953, 1998  相似文献   

19.
Microwave-assisted photocatalytic degradation of dyes is one of the emerging technologies for waste water remediation. Microwave effectively accelerates photocatalytic degradation, when microwave electrodeless lamp (MEL) substitutes traditional UV lamp as light source. This setup can be extremely simplified if MEL and photocatalyst can be replaced by a catalyst which can work under microwave irradiation in the absence of any light source. The present work reports for the first time degradation of acid orange 7 (AO) under microwave irradiation using polyaniline (PANI) as catalyst in the absence of any UV lamp as light source. The degradation/decolourization was carried out in neutral acidic and basic media and was monitored spectrophotometrically to evaluate the ability of microwave irradiation to degrade AO. Microwave irradiation showed excellent performance as it completely decolourizes AO dye solution in 10 min. With the advantages of low cost and rapid processing, this novel catalyst is expected to gain promising application in the treatment of various dyestuff wastewaters on a large scale.  相似文献   

20.
Nanosized Zn(0.6)Cu(0.4)Cr(0.5)Fe(1.5-x)La(x)O(4) (x=0 - 0.06) ferrites doped with La are synthesized by a rheological phase reaction method. Polyaniline (PANI)/ferrite nanocomposites are prepared by in situ polymerization method. The structure, morphology and ferromagnetic property of ferrite powders and nanocomposites are characterized by X-ray powder diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared spectra (FTIR), UV-visible spectroscopy (UV), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). The results indicate that the PANI and nanosized ferrite powders can be combined effectively. The polymers can reduce the agglomeration of nanosized ferrite particles to some extent, which is good for the dispersedness and stabilization of nanoparticles. The PANI/ferrite nanocomposites under applied magnetic field exhibit the hysteretic loops of the ferromagnetic nature. The magnetic properties of nanocomposites are tailored by controlling the ferrite content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号