首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic conditions such as stoichiometries, temperature and pressure are optimized to achieve a high quality oxygen deficient SmFeAsO0.6 superconductor. Both electric and magnetic measurements show a sharp superconducting transition at about 55 K. Several important physical parameters are deduced. The apparent superconducting gap observed in heat capacity with 2Δo/kBTc of 4.57 larger than that of previous fluorine replaced samples indicate that this superconductivity will not strongly conflict with the phonon-mediated BCS mechanism. The mean free length ?=18.8 nm and the coherent length ξ=2.3-3.3 nm show that the superconductivity is in the clean limit.  相似文献   

2.
In our tunneling investigation using Andreev superconductor-normal metal-superconductor contacts on LiFeAs single crystals we observed two reproducible independent subharmonic gap structures at dynamic conductance characteristics. From these results, we can derive the energy of the large superconducting gap ??L = (2.5?C3.4) meV and the small gap ??S = (0.9?C1) meV at T = 4.2 K for the T C local ?? (10.5?C14) K (the contact area critical temperature which deviation causes the variation of ??L). The BCS-ratio is found to be 2??L/k B T C = 4.6?C5.6, whereas 2??S/k B T C ? 3.52 results from induced superconductivity in the bands with the small gap.  相似文献   

3.
The metal- insulator transition and superconductivity of amorphous Si1−xAux was studied by tunneling measurements. A zero bias anomaly was observed in the density of states in the normal state, in agreement with the theory of electron interaction. The energy gap was obtained in the superconducting state. The value of the energy gap at 0 K, Δ0 was found smaller than 1.76 kBTC predicted by the BCS theory.  相似文献   

4.
The superconducting state of W5SiB2 with the T2-phase structure has been investigated by a specific heat measurement and a density of state calculation. The estimated ΔCp/γTc and 2Δ(0)/kBTc values are 1.49 and 3.32, which are close to 1.43 and 3.53 within the weak coupling regime. The electronic specific heat data clearly indicates the absence of gap nodes in the superconducting order parameter, suggesting an isotropic s-wave superconductor. From the density of state calculations, we found that W d-orbital plays an important role for the superconductivity in W5SiB2.  相似文献   

5.
We present measurements of the superconducting upper critical field Hc2(T) and the magnetic phase diagram of the superconductor ErNi2B2C made with a scanning tunneling microscope (STM). The magnetic field was applied in the basal plane of the tetragonal crystal structure. We have found large gapless regions in the superconducting phase diagram of ErNi2B2C, extending between different magnetic transitions. A close correlation between magnetic transitions and Hc2(T) is found, showing that superconductivity is strongly linked to magnetism.  相似文献   

6.
Measurements of the thermal conductivity and the electrical resistivity between 50 mK and 4 K in zero magnetic field and in fields exceeding the superconducting critical field Hc2 indicate the persistance of bulk superconductivity in magnetically ordered SmRh4B4.  相似文献   

7.
We have performed high-resolution photoemission spectroscopy (PES) on FeSr2YCu2O7+δ, of which superconductivity of Tc=49 K was recently reported. We clearly observed opening of a d-wave-like superconducting gap and estimated the maximum gap value (Δmax) to be 10 meV at 15 K. This gap value gives 2Δmax/kBTc∼5, suggesting a strong-coupling nature of superconductivity in FeSr2YCu2O7+δ. Comparative PES study with superconducting and insulating samples shows that the valence band is rigidly shifted as a function of doping without evolution of additional states within the insulating gap.  相似文献   

8.
The problem of the coexistence of superconductivity and magnetic order is studied by taking into account the indirect exchange interaction, magnetic dipolar interaction and magnetic anisotropy. It is shown that the domain-like magnetic structure should be realized in the superconducting phases of ErRh4B4 and HoMo6S8 at the temperatures Tm = 1.4 and 0.7 K respectively. The transition from superconducting domain-like phase (DS) to the normal ferromagnetic (FN) state is described.  相似文献   

9.
In the last few years evidence has been accumulating that there are a multiplicity of energy scales which characterize superconductivity in the underdoped cuprates. In contrast to the situation in BCS superconductors, the phase coherence temperature Tc is different from the energy gap onset temperature T. In addition, thermodynamic and tunneling spectroscopies have led to the inference that the order parameter Δsc is to be distinguished from the excitation gap Δ; in this way, pseudogap effects persist below Tc. It has been argued by many in the community that the presence of these distinct energy scales demonstrates that the pseudogap is unrelated to superconductivity. In this paper, we show that this inference is incorrect. We demonstrate that the difference between the order parameter and excitation gap and the contrasting dependences of T and Tc on hole concentration x and magnetic field H follow from a natural generalization of BCS theory. This simple generalized form is based on a BCS-like ground state, but with self-consistently determined chemical potential in the presence of arbitrary attractive coupling g. We have applied this mean field theory with some success to tunneling, transport, thermodynamics, and magnetic field effects. We contrast the present approach with the phase fluctuation scenario and discuss key features which might distinguish our precursor superconductivity picture from that involving a competing order parameter.  相似文献   

10.
Iron-oxypnictide superconductor NdFeAs(O0.9F0.1) was studied using both low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and tunnel break junction (BJ) methods. STM topography showed granular and spot structures with a typical size of several nanometers, most probably governed by fluorine atom distribution. The majority of STS conductance, G, versus voltage, V, curves revealed V-shaped structures, whereas some of G(V) dependences possessed coherent gap peaks or kinks at gap energies. At the same time, G(V) dependences obtained by the BJ technique showed clear-cut coherence peaks with peak-to-peak distances Vpp = 4Δ/e ∼ 25 mV at 4.2 K, where Δ is the superconducting energy gap, > 0 is the elementary charge. This yields Δ(0) = 6–7 meV, so that the ratio 2Δ(0)/kBTc is about 3–4, kB being the Boltzmann constant. This value is consistent with the conventional weak-coupling s-wave Bardeen–Cooper–Schrieffer theory.  相似文献   

11.
The heat capacity of lead embedded in glass nanopores (7 nm in diameter) and bulk lead was studied in the temperature range 2–40 K without a magnetic field and in magnetic fields of 1–8 T. The properties of lead nanoparticles and bulk lead were compared. The results obtained allowed us to separate the surface superconductivity from the volume superconductivity. The temperature dependence of the heat capacity of lead nanoparticles was shown to exhibit two superconducting transitions above and below the transition temperature for bulk lead (T c = 7.2 K), which are associated with the surface and volume superconductivity. The upper critical fields H c3 for the surface superconductivity and H c2 for the volume superconductivity were determined. It turned out that these fields for Pb nanoparticles are two orders of magnitude higher than those for bulk lead. The “superconductor-normal metal” phase diagrams were constructed for lead nanoparticles. The study established an increase in the density of low-frequency excitations in Pb nanocrystals as compared to bulk Pb and a difference in the electronic heat capacity of Pb nanoparticles as compared to bulk Pb.  相似文献   

12.
The dependencies of ac susceptibility on the superimposed dc magnetic fields for the stripe-ordered La1.45Nd0.4Sr0.15CuO4 single crystal with two superconducting transitions have been studied in the 3D and 2D superconducting ranges for the fields along different orientations of the crystal. The results show that with increasing fields the interlayer Josephson coupling and the in-plane superconductivity are suppressed orderly for the fields perpendicular to CuO2 planes. The influences of the field parallel to CuO2 planes on the 3D and 2D superconductivity are much weaker than those of the field parallel to the c-axis. The irreversibility lines for the 3D and 2D superconducting states are also studied.  相似文献   

13.
Tunneling measurements have been carried out on layered superconductors of the β(SmSI)-type – Li0.48(THF)xHfNCl (THF?=?C4H8O) and HfNCl0.7 – by means of break-junction and scanning tunneling spectroscopy. Break-junction technique reveals Bardeen-Cooper-Schrieffer (BCS) – like gap structures with typical gap values of 2Δ (4.2 K) = 11–12 meV for Li0.48(THF)xHfNCl with the highest Tc = 25.5 K. Some of our measurements revealed multiple gaps and dip-hump structures, the largest gap 2Δ (4.2 K) ≈ 17–20 meV closing at Tc. This was shown both by break-junction and scanning-tunneling spectroscopy. From these experiments it stems that the highest obtained gap ratio 2Δ/kBTc ~ 8 substantially exceeds the BCS weak-coupling limiting values: ≈3.5 and ≈4.3 for s-wave and d-wave order parameter symmetry, respectively. Such large 2Δ/kBTc ratios are rather unusual for conventional superconductors but quite common to high-Tc cuprates, as well as to organic superconductors. Our studies allowed to collect much more evidence concerning the huge pairing energy in those materials and to investigate in detail the complexity of their superconducting gap spectra. An origin of the observed phenomena still remains to be clarified.  相似文献   

14.
We have investigated the magnetic and transport properties of borocarbide superconductors YNi2B2C and YPd5B3C0.4 with Yttrium partially substituted by Samarium. The upper critical fields HC2 are determined by the scaling analysis of the thermal fluctuation magnetoconductivity. Around the transition region, the thermal fluctuation magnetoconductivity can be scaled by a universal function for all applied magnetic fields. The formula HC2(T)=HC2(0)[1−(T/TC)3/2]3/2 of a narrow-band pairing mechanism gives an excellent fit to the value of upper critical field HC2(0)=7.6 T in the Y0.8Sm0.2Pd5B3C0.4 compound. The superconducting coherence length ξ is determined to be 6.58 nm, the Ginzburg-Landau parameter κ is 29 and the penetration depth λ is 191 nm.  相似文献   

15.
The problem of localized superconductivity has motivated the preparation of Mg1−x CuxO solid solutions with NaCl structure and 0.01≤x≤0.20, as well as a study of the magnetization and magnetic susceptibility χ in the 2–400 K temperature range and in magnetic fields of up to 5 T. The temperature dependence of χ is described for all compositions by the Curie-Weiss law, χ = C/(T − θ), where the constant C is close to the value calculated for each composition for μeff = 1.7–1.9μB, and θ is close to zero. For T < 30 K, χ(T) deviates for all compositions toward lower χ, which can be attributed to magnetic ordering of exchange-coupled clusters in the solid solution. At T∼320–330 K, an anomaly of a diamagnetic type, i.e., a decrease of χ by 6–30% of its paramagnetic value, has been observed for all compositions against the background of the generally paramagnetic χ(T). A discussion is presented of alternative reasons for this anomaly and of its possible connection with localized superconductivity. __________ Translated from Fizika Tverdogo Tela, Vol. 42, No. 4, 2000, pp. 701–703. Original Russian Text Copyright ? 2000 by Samokhvalov, Arbuzova, Viglin, Naumov, Smolyak, Korolev, Lobachevskaya.  相似文献   

16.
We have studied the double perovskite [1] structure Sr2Y(Ru1-x Cux)O6 system. The parent compound is an antiferromagnetic insulator with Neel temperature ~ 26 K. Partially substituted the Ru ion by Cu the compounds increase their conductivity drastically and eventually become superconducting. More intriguingly is the observation of the coexistence of superconductivity and magnetic ordering. The superconducting transition temperature T c and the magnetic ordering temperature T m are of the same order. The observed magnetic structure and superconductivity of these compounds can be understood in terms of a plausible theoretical model based on the double exchange idea.  相似文献   

17.
In tunneling experiments with high-quality single crystals of a single-layer cuprate superconductor Bi2Sr2CuO6+δ using the break junction and point-contact techniques at T<T c, the coexistence of the superconducting-state gap and the normal-state gap was observed. The values of the superconducting energy gap 2Δp?p are in the range from 13.4 to 15 meV (Δp?p=6.7–7.5 meV). The values of 2Δp?p are similar for two samples with T c=4 K and for two samples with T c=9–10 K and are independent of the carrier concentration. The normal-state gap, with the magnitude approximately equal to 50 meV, persists at T<T c and in the magnetic field H?H c2 up to 28 T. After the transition of the sample to the normal state, the intensity of the tunneling conductance rapidly decreases with increasing magnetic field strength and temperature. The observed large broadening of the tunneling spectra and large zero-bias conductances can be caused by a strong angular dependence of the superconducting gap. The tunneling results are in full agreement with the data of the angle-resolved photoemission spectroscopy measurements.  相似文献   

18.
The magnetic superconductorRu0.9Sr2YCu2.1O7.9 (Ru-1212Y) has beeninvestigated using neutron diffraction under variable temperature and magnetic field. Withthe complementary information from magnetization measurements, we propose a magnetic phasediagram T-H for the Ru-1212 system. Uniaxialantiferromagnetic (AFM) order of 1.2μ B /Ruatoms with moments parallel to the c-axis is found below the magnetictransition temperature at  ~140 K in the absence of magnetic field. In addition,ferromagnetism (FM) in the ab-plane develops below  ~120 K, butis suppressed at lower temperature by superconducting correlations. Externally appliedmagnetic fields cause Ru-moments to realign from the c-axis to theab-plane, i.e. along the ?1,1,0? direction, and induce ferromagnetismin the plane with  ~1μ B at 60 kOe.These observations of the weak ferromagnetism suppressed by superconductivity and thefield-induced metamagnetic transition between AFM and FM demonstrate not only competingorders of superconductivity and magnetism, but also suggest a certain vortex dynamicscontributing to these magnetic transitions.  相似文献   

19.
Measurements of the heat capacity and the magnetic susceptibility have revealed BCS-like behaviour in the superconducting state of itinerant antiferromagnetic Cr1?xRex alloys for x = 0.30) and 0.26. The thermodynamic quantities, such as electronic heat capacity and thermodynamic critical field have been reproduced with the BCS theory with the energy gap Δ = (1.76 ± 0.05)kBTs, where TS is the superconducting transition temperature for the corresponding system: TS = 3.61 K (2.35 K) for x = 0.30 (0.26).  相似文献   

20.
A deep understanding of the character of superconductivity in the recently discovered Fe-based oxypnictides ReFeAsO1?xFx (Re = rare-earth) necessarily requires the determination of the number of the gaps and their symmetry in k space, which are fundamental ingredients of any model for the pairing mechanism in these new superconductors. In the present paper, we show that point-contact Andreev-reflection spectroscopy experiments performed on LaFeAsO1?xFx (La-1111) polycrystals with Tc  27 K and SmFeAsO0.8F0.2 (Sm-1111) polycrystals with Tc  53 K gave differential conductance curves exhibiting two peaks at low bias and two additional structures (peaks or shoulders) at higher bias voltages, an experimental situation quite similar to that observed by the same technique in pure and doped MgB2. The single-band Blonder–Tinkham–Klapwijk model is totally unable to properly fit the conductance curves, while the two-gap one accounts remarkably well for the shape of the whole experimental dI/dV vs. V curves. These results give direct evidence of two nodeless gaps in the superconducting state of ReFeAsO1?xFx (Re = La, Sm): a small gap, Δ1, smaller than the BCS value (2Δ1/kBTc  2.2–3.2) and a much larger gap Δ2 which gives a ratio 2Δ2/kBTc  6.5–9.0. In Sm-1111 both gaps close at the same temperature, very similar to the bulk Tc, and follow a BCS-like behaviour, while in La-1111 the situation is more complex, the temperature dependence of the gaps showing remarkable deviations from the BCS behaviour at T close to Tc.The normal-state conductance reproducibly shows an unusual, but different, shape in La-1111 and Sm-1111 with a depression or a hump at zero bias, respectively. These structures survive in the normal state up to T1  140 K, close to the temperatures at which structural and magnetic transitions occur in the parent, undoped compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号