首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
Zn2+掺杂对GdTaO4:Eu3+荧光粉结构和发光性能的影响   总被引:1,自引:0,他引:1  
采用高温固相反应法制备了掺杂不同浓度Zn2 的GdTaO4:Eu0.1荧光粉,研究了Zn2 掺杂对GdTaO4:Eu3 的结晶性能,晶粒形貌和光致发光特性的影响.以X射线衍射(XRD)、扫描电子显微镜(SEM)、激发-发射谱、衰减时间谱等方法对其性能进行了表征.结果表明,Zn2 掺杂可显著提高GdTaO4:Eu3 的光致发光强度,当掺杂浓度x=0.01时,光强被提高至2.7倍,可归因于的Zn2 进入了GdTaO4:Eu3 基质晶格,产生了一定浓度的氧空位以达到电荷平衡,并导致发光中心Eu3 的晶格场发生畸变;当x=0.13时,光强提高至3.2倍,且其衰减时间被缩短至40%,可归因于Zn2 的助熔剂效果;但当x>0.13时,ZnO和GdTa7O19杂相的出现将导致发光强度减弱和衰减时间延长.另外,初步探索表明,Li2CO3和.KCl的共掺杂能进一步提高G.dTaO4:Eu0.1,Zn0.13的发光强度.  相似文献   

2.
在团簇近似的基础上,利用分子动力学和密度泛函计算相结合的手段,在Y2O3∶Eu3 中研究了随Li 掺杂浓度的变化,缺陷形成情况以及C2位处Y-O键长的变化对电子态密度的影响.结果表明,随着Li 掺杂浓度的增加,与C2格位相关团簇的Y-O键平均键长出现了增加-减小-增加的变化趋势,这可能是引起此类材料发光强度随Li 浓度出现类似变化的原因.  相似文献   

3.
GdVO4:Eu3+的热释光研究   总被引:3,自引:2,他引:3  
GdVO4:Eu^3 有着十分优良的发光特性,它发光强度高,特别是具有很好的温度特性,在室温以上发光强度随温度的升高而增强,很利于在高温下使用此材料。本文对它的热释光进行了研究,其热释光峰值分别位于193,235和304K,根据计算可知它们的陷阱深度分别为0.39,0.47和0.61eV,陷阱的主要来源可能是F^ ,F和钒空位;Eu^3 掺入导致的晶格畸变,其中最主要的来源可能是空位导致的。  相似文献   

4.
5.
采用高温固相法制备了LiBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响.结果显示,在401nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5Do→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于619 nm;监测619 nm发射峰,所得激发光谱由O2- →Eu3+电荷迁移带(200~350nm)和f-f高能级跃迁吸收带(350~450nm)组成,主峰位于401 nm.改变 Eu3+掺杂浓度,LiBaPO4:Eu3+材料的发射强度随之改变,Eu3+摩尔分数为5%时,强度最大;依据Dexter理论,得出浓度猝灭机理为电偶极-电偶极相互作用;添加电荷补偿剂提高了LiBaPO4:Eu3+材料的发射强度,且Li+和C1-的效果最好.  相似文献   

6.
采用高温固相法制备了KBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响,并利用X射线衍射及光谱等技术对材料的性能进行了表征.研究结果显示:在400 nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于621 nm;监...  相似文献   

7.
采用高温固相法制备了LiBaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、电荷补偿剂等对材料发光性质的影响.结果显示,在401nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5Do→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰位于619 nm;监测619 nm发射峰,所得激发光谱由O2- →Eu3+电...  相似文献   

8.
掺杂Eu3+离子LaPO4的合成及其发光特性研究   总被引:5,自引:3,他引:5  
采用固相反应法合成了掺杂Eu3+离子的LaPO4,并用X射线粉末衍射对其结构进行了表征.XRD数据经计算机处理表明:LaPO4属单斜晶系,晶胞参数a=6.84A,b=7.08A,c=6.46A,β=103.85°,属P21/n(No.14)空间群.测定了其激发光谱和发射光谱,光谱数据表明:在掺杂Eu3+离子的LaPO4荧光体中,基质LaPO4的电荷迁移激发态的能量能有效地传递到Eu3+离子,说明基质LaPO4本身对发光有贡献.位于592,612 nm附近的2个发射峰均出现劈裂现象,即有2个5D0→7F1(590,594nm)、2个5D0→7F2(610,614nm)发射峰,说明掺杂的Eu3+离子在LaPO4晶体中有着不相同的配位环境,推测Eu3+离子处于D2d或D3对称格位.  相似文献   

9.
采用水热法制备了不同形貌的GdVO4:Eu3+纳米晶样品,对其结构以及发光性质进行了表征。XRD结果表明:水热前驱体和经过灼烧之后样品均为四方晶系,具有锆石结构。TEM照片表明:通过改变表面活性剂分别得到了分散性良好的米粒状、六角形和球形的GdVO4:Eu3+纳米晶粒子。发光光谱表明:在288nm的紫外光激发下,不同形貌的GdVO4:Eu3+纳米晶材料均在617nm处产生特征红光发射,归属为Eu3+离子的5D0→7F2跃迁,不同形貌粒子的发光光谱的相对强度有所不同。  相似文献   

10.
采用高温固相烧结法制备了Er3+/Eu3+共掺杂和Yb3+/Er3+/Eu3+共掺杂系列硼硅酸盐玻璃样品。在978 nm半导体激光器抽运下,测量了样品的光致发光谱,分析了上转换机制。结果表明:随着Er3+浓度的增加,Eu3+的595 nm光谱强度增强;Eu3+的692 nm光谱强度随Yb3+浓度增加而增强,并明显强于595 nm光谱。Er3+/Eu3+、Yb3+/Eu3+之间的能量传递和合作上转换等机制导致Eu3+离子上转换发射。  相似文献   

11.
Wu Y  Wang YS  He DW  Fu M  Chen ZM  Li Y  Miao F 《光谱学与光谱分析》2011,31(4):890-893
采用溶胶-凝胶法在Zn2SiO4基质中掺杂Eu3+,合成了红色荧光粉Zn2SiO4:Eu3+.通过样品的X射线衍射光谱、红外光谱、扫描电镜以及光致发光光谱的测试和表征,研究了Zn2SiO4:Eu3+的内部结构和发光特性.扣描电镜结果显示样品为球状荧光粉,颗粒直径为1~3μm.在395 nm激发下,样品在613 nm处发射出很强的红光.结合荧光光谱,分析了样品的退火温度,Eu3+的浓度,电荷补偿剂Li+的浓度对样品发光强度的影响.研究发现,红色荧光粉Zn2SiO4:Eu3+的发光强度随退火温度的升高而增加,发光强度随Eu3+和Li+浓度的增加先增大后减小.  相似文献   

12.
利用共沉淀方法制备了Eu3+/Yb3+单掺和共掺的ZrO2粉体材料,研究了煅烧温度和掺杂浓度对结构和发光性质的影响。XRD结果表明:所制备单掺样品含有单斜相和四方相2种不同结构,随着热处理温度的升高,四方相向单斜相转变,经1 150℃处理后,四方相消失,呈现单一的单斜相;Yb3+离子的掺入有稳定ZrO2四方相的作用,随着掺杂浓度的增加,单斜相转变为四方相。由于晶相的不同,Eu3+处在四方相和单斜相2种发光中心,二者发光性质不同。Eu3+/Yb3+共掺后,在270 nm激发Eu3+时,观测到了Yb3+在近红外波段(980 nm)的发光,同时证实Eu3+的激发光谱和Yb3+的激发光谱相一致,表明存在Eu3+到Yb3+的能量传递,交叉弛豫和共合作能量传递过程是其可能的能量传递机理。  相似文献   

13.
通过高温固相法分别制备了CaWO4和CaWO4:1%Eu3+样品.测量了样品不同温度(10-300 K)的荧光光谱、荧光衰减曲线和时间分辨荧光光谱.样品的荧光光谱表明:在240 nm紫外光激发下,两个样品在430 nm处都展现出来源于WO2?4的蓝色发射;样品CaWO4:Eu3+的Eu3+(5D0→7F1,2,3,4)的特征发射则归属于WO2?4到Eu3+间的能量传递.由样品室温(300 K)荧光衰减曲线发现:纯CaWO4的荧光寿命为8.85μs, Eu3+掺杂之后WO2?4的荧光寿命缩短至6.27μs,这从另一方面证明了WO2?4与Eu3+间能量传递的存在.由荧光寿命得到T =300 K时, CaWO4:1%Eu3+中WO2?4与Eu3+间的能量传递效率(ηET)为29.2%,能量传递速率(ωET)为4.65×104 s?1.通过时间分辨荧光光谱,获得了从WO2?4到Eu3+之间的能量传递的时间演变过程,当温度由10 K增加到300 K时,能量传递出现的时间单调变小.测试了不同温度(10-300 K)对CaWO4:Eu3+的荧光寿命的影响,发现在10-50 K时, Eu3+的荧光寿命增加,但温度超过50 K时发生猝灭,荧光寿命开始下降;WO2?4的荧光寿命则是随着温度的升高逐渐缩短.  相似文献   

14.
利用高温固相法制备了BAMoO4:Eu3+发光材料,采用X射线衍射(XRD)和荧光光谱仪对样品进行测试.结果表明,在800℃时得到BaMoO4纯相,属四方晶系.激发光谱由一个宽带和处在350nm后的若干个线状谱组成,宽带归属于Eu3+-O2-电荷迁移吸收带(CT),线状谱属于Eu3+的f--f激发跃迁吸收.发射光谱由5D0-7F1(591 nm),5D0-7F2(615 nn),5D0-7F3(654 nm)和5D0-7F4(702 nm)四组峰组成,其红光5D0-7F2辐射跃迁发射最强,对应EU3+的电偶极跃迁.  相似文献   

15.
Wang XG  Qi X  Bo SL  Na ML 《光谱学与光谱分析》2011,31(5):1193-1196
采用溶胶-凝胶法制备了稀土Eu3+掺杂于不同比例的纳米TiO2-SiO2复合体系,研究了基质中钛、硅摩尔配比对发光性能的影响.样品的FTIR谱图显示:纳米复合氧化物SiO2-TiO2之间发生了键合作用,形成了Ti-O-Si键;TEM显示样品的颗粒大小约为35 nm,是具有一定的单分散性的球形颗粒;XRD和SAED结果表明,样品退火至700℃后仍为单一的锐钛矿相,这说明微量硅的加入对二氧化钛的锐钛矿相有热稳定的作用.当微量的Si4+进入TiO2的晶格,取代部分Ti4+的位置时,形成了结构等电子陷阱.通过对样品的激发光谱、发射光谱分析,发现这种结构有利于将基质吸收的能量传递到发光中心,使Eu3+的465nm处7F0→5D2激发效率最高,成为最灵敏的激发线.  相似文献   

16.
电荷补偿对Sr2SiO4:Eu^3+材料光谱特性的影响   总被引:1,自引:1,他引:1  
采用溶胶-凝胶法制备了Sr2SiO4:Eu3+发光材料.测量了Sr2SiO4:Eu3+材料的激发与发射光谱,发射光谱主峰位于618 nm处;监测618 nm发射峰时,所得材料的激发光谱主峰分别为320 nm、397 nm、464 nm和518 nm.研究了Sr2SiO4:Eu3+材料发射峰强度随电荷补偿剂Li+、Na+和K+掺杂浓度的变化情况.结果显示,随电荷补偿剂浓度的增大,材料发射峰强度均表现出先增大后减小的趋势,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,补偿剂Li+、Na+和K+的浓度分别为8 mol%、7.5 mol%和7 mol%.  相似文献   

17.
合成了Eu3+,Tm3+和Yb3+掺杂的NaYF4材料.360 nm光激发呈蓝色发光,峰值位于452 nm,对应Tm3+的1D2→3F4跃迁;395 nm光激发旱橙色发光,峰值位于591 nm,对应Eu3+的5D0→7F1跃迁;409 nml光激发呈红色发光,峰值位于613 nm,对应Eu3+的5D0→7F2跃迁;980 nm光激发呈蓝色和红色发光,发光峰位于474和646 nm.蓝光来源Tm3+的1G4→3H6跃迁,红光来源Tm3+的1G4→3F4跃迁.在双对数曲线中,蓝光474 nm和红光646 nm的斜率分别为2.1和2.4,在980 nm光激发下,蓝光和红光发射都是双光子过程.还研究了材料的吸收光谱,并利用X射线衍射,扫描电镜测试了材料的物相结构和微观彤貌.结果表明:NaYF4:Eu3+,Tm3+,Yb3+材料具有较规则的六方相结构,结品良好.  相似文献   

18.
稀土Eu元素因其优良的光学特性常被作为激活离子广泛应用于无机发光材料中。激活离子的发光性质由自身的价态决定,同时受基质晶体结构影响。不同价态的Eu离子呈现不同的光学特性,当二者共存时有可能得到单一基质的白光。本文主要综述近几年Eu~(3+)-Eu~(2+)共存于铝酸盐、磷酸盐、硅酸盐及硼酸盐基质中的荧光性能、Eu~(3+)的还原条件及还原机理。  相似文献   

19.
Eu3+摩尔浓度对Y2O2S:Eu3+,Mg2+,Ti4+红色长余辉材料光谱的影响   总被引:12,自引:2,他引:12  
用高温固相法制备了Y2O2S:Eu^3 ,Mg^2 ,Ti^4 红色长余辉材料。测量了该材料的余辉曲线,余辉时间为1h以上;由X射线衍射得到晶体结构为Y2O2S.测量了不同Eu^3 摩尔浓度下的激发光谱和发射光谱,得到从^5DJ(J=0,1,2,3)^-7FJ(J=0,1,2,3,4,5)的发射谱线,并得到位于260,345,468和540nm激发峰。由于激活剂饱和效应,Y2O2S:Eu^3 ,Mg^2 ,Ti^4 发射光谱中513.6,540.1,556.4,587.3和589.3nm属于从^5D2,^5D1到^7FJ(J=0,1,2,3,4)跃迁的发射峰随Eu^3 摩尔浓度的增加相对削弱;激发谱包括位于350nm左右属于电荷转移态吸收(Eu^3 -O^2-,Eu^3 -S^2 )的激发主峰和在可见光区位于468,520和540nm属于Eu^3 离子4f-4厂吸收的激发峰。随着Eu^3 摩尔浓度的增加,位于468,520和540nm的激发峰相对增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号