首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mouse natural killer T (NKT) cells expressing an invariant T cell antigen receptor (TCR) recognize glycosphingolipids (GSLs) from Sphingomonas bacteria. The synthetic antigens previously tested, however, were designed to closely resemble the potent synthetic agonist alpha-galactosyl ceramide (alphaGalCer), which contains a monosaccharide and a C18:0 sphingosine lipid. Some Sphingomonas bacteria, however, also have oligosaccharide-containing GSLs, and they normally synthesize several GSLs with different sphingosine chains including one with a cyclopropyl ring-containing C21:0 (C21cycl) sphingosine. Here we studied the stimulation of NKT cells with synthetic GSL antigens containing natural tetrasaccharide sugars, or the C21cycl sphingosine. Our results indicate that there is a great degree of variability in the antigenic potency of different natural Sphingomonas glycolipids, with the C21cycl sphingosine having intermediate potency and the oligosaccharide-containing antigens exhibiting limited or no stimulatory capacity.  相似文献   

2.
Natural killer T cells (NKT cells) play a central role in regulating immune responses influencing conditions ranging from autoimmune to infectious diseases. NKT cell responses are induced by recognition of glycolipid antigens presented by CD1d, an antigen presentation protein. In the last 10 years great strides have been made in understanding the types of glycolipids recognized by NKT cells. These advances have included determination of the lipid and carbohydrate recognition requirements for stimulation and identification of "natural" antigens for these cells.  相似文献   

3.
A NKT cell repertoire is characterized by the expression of the Valpha19-Jalpha26 invariant TCR alpha chain (Valpha19 NKT cell). This repertoire, as well as a well-established Valpha14-Jalpha281 invariant TCR alpha(+) NKT cell subset (Valpha14 NKT cell), has been suggested to have important roles in the regulation of the immune system and, thus, is a major therapeutic target. Here, we attempted to find specific antigens for Valpha19 NKT cells. Valpha19 as well as Valpha14 NKT cells exhibited reactivity to alpha-galactosyl ceramide (alpha-GalCer). Thus, a series of monoglycosyl ceramides with an axially oriented glycosidic linkage between the sugar and ceramide moiety were synthesized and their antigenicity to Valpha19 NKT cells was determined by measuring their immune responses in culture with glycolipids. Comprehensive examinations revealed substantial antigenic activity for Valpha19 NKT cells by alpha-mannosyl ceramide.  相似文献   

4.
Introduction of an aromatic group into the fatty acyl chain of alpha-GalCer modulates the activity and selectivity of IFN-gamma/IL-4 secretion through CD1d-mediated activation of NKT cells. Compound 14-16 are more potent than alpha-Galcer and biased for IFN-gamma than for IL-4. These new glycolipids may find use as adjuvants or as antimetastatic agents.  相似文献   

5.
The protein CD1d binds self and foreign glycolipids for presentation to CD1-restricted T cells by means of TCR recognition and activates T(H)1 and T(H)2 chemokine release. In this study, a variety of glycolipid ligands were attached to a microarray surface and their binding with dimeric CD1d was investigated. An alpha-galactosyl ceramide (alpha-GalCer) bearing a carbamate group at the 6'-OH position was tethered to the surface, and the dissociation constant on surface with CD1d was determined to reflect the multivalent interaction. Competition assays were then used to determine the dissociation constants (Ki) of new and intact glycolipids in solution. The 4-fluorophenyloctanoyl-modified alpha-GalCer (18) was found to bind most strongly with CD1d (Ki 0.21 microM), 2 orders of magnitude stronger than alpha-GalCer and more than three times more selective than alpha-GalCer for IFN-gamma release from NKT cells. Various alpha-GalCer analogues were analyzed, and the results showed that the binding affinity of glycolipids to CD1d correlates well with IFN-gamma production but poorly with IL-4 secretion by NKT cells, suggesting that tighter binding ligands could bias cytokine release through the T(H)1 pathway.  相似文献   

6.
Alpha-galactosylceramides are potent stimulators of human T cells. Stimulation occurs through binding of the glycolipids by CD1d, presentation to T cells, and formation of a CD1d-glycolipid-T cell receptor complex. To facilitate the elucidation of the structural features of glycolipids necessary for T cell stimulation, alpha-galactosylceramides have been prepared with small molecules appended at the C6 position of the sugar. The appended molecules do not significantly influence the abilities of the glycolipids to stimulate T cells. [reaction: see text]  相似文献   

7.
Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl‐glycerol dibiphytanyl glycerol tetraethers (2Gly‐GDGTs) are associated with methanotrophic ANME‐1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly‐GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the δ13C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of δ13C values of sugars cleaved from 2Gly‐GDGTs in two marine sediment samples, one containing predominantly ANME‐1 archaea and the other benthic archaea, were obtained and compared with the δ13C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in 13C relative to the corresponding major biphytane. This 13C enrichment was significantly larger in the putative major glycolipids from ANME‐1 archaea (~15‰) than in those from benthic archaea (<7‰). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Lipopolysaccharides (LPS) of Leishmania spp are known to alter innate immune responses. However, the ability of these sugars to specifically alter adaptive T‐cell responses is unclear. To study cap sugar–T‐cell interactions, pathogen mimics (namely glycodendrimer‐coated latex beads with acid‐labile linkers) were synthesized. Upon lysosomal acidification, linker breakdown releases glycodendrimers for possible loading on antigen presenting molecules to induce T‐cell growth. T‐cell proliferation was indeed higher after macrophage exposure to mannobioside or ‐trioside‐containing glycodendrimers than to non‐functionalized beads. Yet, blocking phagolysosomal acidification only reduced T‐cell proliferation with macrophages exposed to beads with an acid‐labile‐linker and not to covalently‐linked beads. These sugar‐modified reagents show that oligosaccharides alone can drive T‐cell proliferation by acidification‐requiring presentation, most significantly in NKT receptor (CD160)‐restricted T cells.  相似文献   

9.
Controlling the activity and selectivity of converting biomass derivatives to syngas (H(2) and CO) is critical for the utilization of biomass feedstocks as renewable sources for chemicals and fuels. One key chemistry in the conversion is the selective bond scission of the C-OH and C═O functionalities, which are present in many biomass derivatives. Because of the high molecular weight and low vapor pressure, it is relatively difficult to perform fundamental surface science studies of C6 sugars, such as glucose and fructose, using ultrahigh vacuum techniques. Glycolaldehyde (HOCH(2)CH═O) is the smallest molecule that contains both the C-OH and C═O functional groups, as well as the same C/O ratio as C6 sugars, and thus is selected as a probe molecule in the current study to determine how the presence of the C═O bond affects the reaction mechanism. Using a combination of density functional theory calculations and experimental measurements, our results indicate that the reaction pathway of glycolaldehyde to produce syngas can be enhanced by supporting monolayer Ni on a Pt substrate, which shows higher activity than either of the parent metals. Furthermore, the Pt substrate can be replaced by tungsten monocarbide to achieve similar activity and selectivity, indicating the possibility of using Ni/WC to replace Ni/Pt as active and selective catalysts with higher stability and lower cost.  相似文献   

10.
Dysiherbaine (1) and its congener neodysiherbaine A (2) are naturally occurring excitatory amino acids with selective and potent agonistic activity for ionotropic glutamate receptors. We describe herein the total synthesis of 2 and its structural analogues 3-8. Advanced key intermediate 16 was employed as a branching point to assemble a series of these analogues 3-8 with respect to the C8 and C9 functionalities, which would not have been accessible through manipulations of the natural product itself. The synthesis of key intermediate 16 features (i) stereocontrolled C-glycosylation to set the C6 stereocenter, (ii) concise synthesis of the bicyclic ether skeleton through chemo- and stereoselective dihydroxylation of the exo-olefin and stereoselective epoxidation of the endo-olefin, followed by epoxide ring opening/5-exo ring closure, and (iii) catalytic asymmetric hydrogenation of enamide ester to construct the amino acid appendage. A preliminary biological evaluation of analogues for their in vivo toxicity against mice and binding affinity for glutamate receptors showed that both the type and stereochemistry of the C8 and C9 functional groups affected the subtype selectivity of dysiherbaine analogues for members of the kainic acid receptor family.  相似文献   

11.
The absolute stereochemistry at the site of attachment of the fatty acid residues to the lactide core of the glycolipids cycloviracin B1 (1) and glucolipsin A (13) has been elucidated as (3R,3'R) by comparison of their 13C NMR data with those of the three possible, differently configured core structures 9, 12, and 14. Moreover, a careful analysis of this set of NMR data allows us to conclude that the structures previously proposed for a seemingly closely related class of antivirally active compounds, i.e., the fattiviracin family, need revision. The key step en route to the symmetrical dilactones 9 and 12 consists of a highly efficient cyclodimerization process which exploits the template effect exerted by potassium cations on the hydroxy acid cyclization precursor. The latter is obtained in excellent overall yield by a sequence involving ring-opening Claisen condensation of pentadecanolide to form the functionalized beta-ketoester 4, asymmetric hydrogenation catalyzed by [(BINAP)RuCl2]2.NEt3, and a beta-selective glycosylation reaction using trichloroacetimidate 6. The unsymmetrical dilactone 14, in contrast, is prepared by a stepwise approach based on a Yamaguchi lactonization as the means to close the macrocyclic ring.  相似文献   

12.
Two 60+-membered libraries of alpha-galactosylceramides have been prepared by reactions between activated ester resins and two core, fully deprotected galactosylated sphingoid bases. The libraries were evaluated for their ability to stimulate CD1d-restricted NKT cells, using in vitro stimulation of a murine NKT cell hybridoma line and for their ability to induce the expansion of NKT cells from peripheral blood mononuclear cells (PBMC) of a normal human subject. Our results showed that many compounds constructed on a C18-phytosphingosine base had significant stimulatory activity in both assays. Because no product purification was required, this approach is particularly attractive as a method for rapid synthesis of large libraries of potential immunomodulatory glycosylceramides.  相似文献   

13.
The capacitive behaviors of high-purity double-walled carbon nanotubes (DWNTs) were investigated before and after oxidation using nitric acid (HNO3). The electrodes prepared from the HNO3-oxidized DWNTs have exhibited higher capacitances than the pristine nanotube electrode in both aqueous and non-aqueous systems, despite the deterioration of their specific surface area after HNO3 oxidation. The superiority of the HNO3-oxidized DWNTs in capacitance properties is caused by the variations of surface wettability and the interstitial pore structure of nanotube bundles, which result from the introduction of polar oxygen functional groups onto the nanotube surface by HNO3 oxidation.  相似文献   

14.
The first synthesis of a glycolipid library by hydrophobically assisted switching phase (HASP) synthesis is described. HASP synthesis enables flexible switching between solution-phase steps and solid-supported reactions conducted with molecules attached to a hydrophobic silica support. A library of glycolipids derived from the lead compound 1-a strongly immunostimulatory rhamnolipid--with variations in the carbohydrate part, the lipid components, and the stereochemistry of the 3-hydroxy fatty acids was designed and synthesized. The enantioselective synthesis of the 3-hydroxy fatty acid building blocks was achieved by employing asymmetric hydrogenation of 3-oxo fatty acids. Glycolipids were prepared by this approach without any intermediary isolation steps, mostly in excellent yields. Final deprotection to the carboxylic acids was accomplished by enzymatic ester cleavage. All prepared rhamnolipids were tested for their immunostimulatory properties against human monocyte cells by assaying the secretion of the cytokine tumor necrosis factor alpha (TNFalpha) into the medium. The observed structure-activity relationships of rhamnolipids indicate a specific, recognition-based mode of action, with small structural variations in the rhamnolipids resulting in strong effects on the immunostimulatory activities of the rhamnolipids at low micromolar concentrations.  相似文献   

15.
Pinellic acid from the tuber of Pinellia ternate, an active herbal component of the traditional Japanese herbal (Kampo) medicine Sho-seiryu-to, is a C18 trihydroxy fatty acid whose absolute stereochemistry has now been determined. All stereoisomers of pinellic acid were synthesized via regioselective asymmetric dihydroxylation, regioselective inversion, and stereoselective reduction in order to determine their absolute stereochemistries and adjuvant activities. Among this series of isomers, the (9S,12S,13S)-compound, which is a natural product, exhibited the most potent adjuvant activity. Spectral data for all of the stereoisomers of the 1,2-allylic diols were compared and related to their stereochemistries.  相似文献   

16.
The amino sugars (e.g., glucosamine, galactosamine, mannosamine, muramic acid) in soils are frequently employed as biomarkers of microbial residues. The analysis of amino sugars in environmental matrices, however, is expected to be more complicated than their determination in isolated microbial cells. In this study, we employed a widely used protocol for amino sugar analysis, and found that some aminoglycoside antibiotics interfere with amino sugar quantification in vitro. The method converts the aminoglycosides to compounds that coelute with the aldononitrile acetate derivatives of the amino sugars. Specifically, streptomycin significantly interferes with muramic acid analysis, and kanamycin, tobramycin and amikacin hamper glucosamine measurement. Mass spectrometry confirmed that the interfering compounds from aminoglycosides are not actually genuine microbial amino sugar monomers (bacterial muramic acid or fungal glucosamine), and are most likely to be N-methyl glucosamine or 3-amino-3-deoxy-glucopyranose. In contrast to their effects on muramic acid and glucosamine analyses, aminoglycosides do not interfere with galactosamine and mannosamine quantification. The few data that exist on the environmental occurrence of aminoglycoside antibiotics suggest they occur at only trace levels. Our findings may have implications for the qualitative and quantitative validity of results from amino sugar assays in some context. Application of the aldononitrile acetate derivatization method to samples (especially in selective microbial cultures using aminoglycosides as inhibitors) requires that potential interference be evaluated.  相似文献   

17.
Glycolipid presentation by CD1 proteins has emerged as an important aspect of antigen recognition, and presentation of alpha-glycosylceramides by CD1d to natural killer T cells has become a central focus in understanding how glycolipid presentation can influence immune responses. An alpha-galactosylceramide containing relatively long lipid chains has been the subject of intense study because, when presented by CD1d to natural killer T cells, it stimulates the release of both proinflammatory and immunomodulatory cytokines. Using an efficient synthesis of alpha-galactosylceramides, we have prepared a series of glycolipids in which the lipid chain lengths have been incrementally varied. The responses of natural killer T cells to these glycolipids have been determined, and we have found that truncation of the phytosphingosine lipid chain increases the relative amounts of immunomodulatory cytokines released. In similar fashion, the length of the acyl chain in alpha-galactosylceramides influences cytokine release profiles.  相似文献   

18.
A new class of glycolipids were generated by the incorporation of lipid entities at the C-6 position of D-glucose through oxidation of the primary hydroxyl group of tetrabenzylated D-glucose to form corresponding aldehyde, which in turn was subjected to Grignard reaction with C8 and C16 alkyl magnesium halides. The resulting lipidated secondary alcohol was further subjected to esterification with long-chain carboxylic acids to afford novel glycolipids. All of the derivatives 4a–b, 6a–d, and 8a–b exhibited low cytotoxicity and induced strong T and B cell proliferation and IL-2, IL-4, and IFN-γ expression from stimulated splenocyte culture, signifying their potent immunostimulating activity.  相似文献   

19.
The total synthesis of cytostatin, an antitumor agent belonging to the fostriecin family of natural products, is described in full detail. The convergent approach relied on a key epoxide-opening reaction to join the two stereotriad units and a single-step late-stage stereoselective installation of the sensitive (Z,Z,E)-triene through a beta-chelation-controlled nucleophilic addition. The synthetic route provided rapid access to the C4-C6 stereoisomers of the cytostatin lactone, which were prepared and used to define the C4-C6 relative stereochemistry of the natural product. In addition to the natural product, each of the C10-C11 diastereomers of cytostatin was divergently prepared (11 steps from key convergence step) by this route and used to unequivocally confirm the relative and absolute stereochemistry of cytostatin. Each of the cytostatin diastereomers exhibited a reduced activity toward inhibition of PP2A (>100-fold), demonstrating the importance of the presence and stereochemistry of the C10-methyl and C11-hydroxy groups for potent PP2A inhibition. Extensions of the studies provided dephosphocytostatin, sulfocytostatin (a key analogue related to the natural product sultriecin), 11-deshydroxycytostatin, and an analogue lacking the entire C12-C18 (Z,Z,E)-triene segment, which were used to define the magnitude of the C9-phosphate (>4000-fold), C11-alcohol (250-fold), and triene (220-fold) contribution to PP2A inhibition. A model of cytostatin bound to the active site of PP2A is presented, compared to that of fostriecin, which is also presented in detail for the first time, and used to provide insights into the role of the key substituents. Notably, the alpha,beta unsaturated lactone of cytostatin, like that of fostriecin, is projected to serve as a key electrophile, providing a covalent adduct with Cys269 unique to PP2A, contributing to its potency (> or =200-fold for fostriecin) and accounting for its selectivity.  相似文献   

20.
Natural killer T (NKT) cells recognize glycolipids presented by CD1d. The first antigen described, α-galactosyl ceramide (αGalCer), is a potential anticancer agent whose activity depends upon IFN-γ secretion. We report two analogs of αGalCer based on a naturally occurring glycosphingolipid, plakoside A. These compounds induce enhanced IFN-γ that correlates with detergent-resistant binding to CD1d and an increased stability of the lipid-CD1d complexes on antigen-presenting cells. Structural analysis on one of the analogs indicates that it is more deeply bound inside the CD1d groove, suggesting tighter lipid-CD1d interactions. To our knowledge, this is the first example in which structural information provides an explanation for the increased lipid-CD1d stability, likely responsible for the Th1 bias. We provide insights into the mechanism of IFN-γ-inducing compounds, and because our compounds activate human NKT cells, they could have therapeutic utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号