首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of radical transport in the alpha2 (R1) subunit of class I E. coli ribonucleotide reductase (RNR) has been investigated by the phototriggered generation of a tyrosyl radical, *Y356, on a 20-mer peptide bound to alpha2. This peptide, Y-R2C19, is identical to the C-terminal peptide tail of the beta2 (R2) subunit and is a known competitive inhibitor of binding of the native beta2 protein to alpha2. *Y356 radical initiation is prompted by excitation (lambda >or= 300 nm) of a proximal anthraquinone, Anq, or benzophenone, BPA, chromophore on the peptide. Transient absorption spectroscopy has been employed to kinetically characterize the radical-producing step by time resolving the semiquinone anion (Anq*-), ketyl radical (*-BPA), and Y* photoproducts on (i) BPA-Y and Anq-Y dipeptides and (ii) BPA/Anq-Y-R2C19 peptides. Light-initiated, single-turnover assays have been carried out with the peptide/alpha2 complex in the presence of [14C]-labeled cytidine 5'-diphosphate substrate and ATP allosteric effector. We show that both the Anq- and BPA-containing peptides are competent in deoxycytidine diphosphate formation and turnover occurs via Y731 to Y730 to C439 pathway-dependent radical transport in alpha2. Experiments with the Y730F mutant exclude a direct superexchange mechanism between C439 and Y731 and are consistent with a PCET model for radical transport in which there is a unidirectional transport of the electron and proton transport among residues of alpha2.  相似文献   

2.
Escherichia coli ribonucleotide reductase (RNR) catalyzes the reduction of nucleotides to 2'-deoxynucleotides. The active enzyme is a 1:1 complex of two homodimeric subunits, alpha2 and beta2. The alpha2 is the site of nucleotide reduction, and beta2 harbors a diferric tyrosyl radical (Y122*) cofactor. Turnover requires formation of a cysteinyl radical (C439*) in the active site of alpha2 at the expense of the Y122* in beta2. A docking model for the alpha2beta2 interaction and a pathway for radical transfer from beta2 to alpha2 have been proposed. This pathway contains three Ys: Y356 in beta2 and Y731/Y730 in alpha2. We have previously incorporated 3-hydroxytyrosine and 3-aminotyrosine into these residues and showed that they act as radical traps. In this study, we use these alpha2/beta2 variants and PELDOR spectroscopy to measure the distance between the Y122* in one alphabeta pair and the newly formed radical in the second alphabeta pair. The results yield distances that are similar to those predicted by the docking model for radical transfer. Further, they support a long-range radical initiation process for C439* generation and provide a structural constraint for residue Y356, which is thermally labile in all beta2 structures solved to date.  相似文献   

3.
E. coli ribonucleotide reductase (RNR) catalyzes the production of deoxynucleotides using complex radical chemistry. Active RNR is composed of a 1:1 complex of two subunits: alpha2 and beta2. Alpha2 binds nucleoside diphosphate substrates and deoxynucleotide/ATP allosteric effectors and is the site of nucleotide reduction. Beta2 contains the stable diiron tyrosyl radical (Y122.) cofactor that initiates deoxynucleotide formation. This process is proposed to involve reversible radical transfer over >35 A between the Y122 in beta2 and C439 in the active site of alpha2. A docking model of alpha2beta2, based on structures of the individual subunits, suggests that radical initiation involves a pathway of transient, aromatic amino acid radical intermediates, including Y730 and Y731 in alpha2. In this study the function of residues Y730 and Y731 is investigated by their site-specific replacement with 3-aminotyrosine (NH2Y). Using the in vivo suppressor tRNA/aminoacyl-tRNA synthetase method, Y730NH2Y-alpha2 and Y731NH2Y-alpha2 have been generated with high fidelity in yields of 4-6 mg/g of cell paste. These mutants have been examined by stopped flow UV-vis and EPR spectroscopies in the presence of beta2, CDP, and ATP. The results reveal formation of an NH2Y radical (NH2Y730. or NH2Y731.) in a kinetically competent fashion. Activity assays demonstrate that both NH2Y-alpha2s make deoxynucleotides. These results show that the NH2Y. can oxidize C439 suggesting a hydrogen atom transfer mechanism for the radical propagation pathway within alpha2. The observed NH2Y. may constitute the first detection of an amino acid radical intermediate in the proposed radical propagation pathway during turnover.  相似文献   

4.
Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to 2'-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C(439)) in α2 by a stable diferric tyrosyl radical (Y(122)?) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 ? through a specific pathway of residues: Y(122)?→ W(48)→ Y(356) in β2 to Y(731)→ Y(730)→ C(439) in α2. To study the details of this process, 3-aminotyrosine (NH(2)Y) has been site-specifically incorporated in place of Y(356) of β. The resulting protein, Y(356)NH(2)Y-β2, and the previously generated proteins Y(731)NH(2)Y-α2 and Y(730)NH(2)Y-α2 (NH(2)Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s(-1). Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH(2)Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH(2)Y?) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH(2)Y? formation is biphasic (k(fast) of 9-46 s(-1) and k(slow) of 1.5-5.0 s(-1)) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH(2)Y? formation, while the k(cat) of ~0.5 s(-1) is proposed to be associated with rate-limiting oxidation by NH(2)Y? of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y(730)NH(2)Y-α2 and Y(731)NH(2)Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.  相似文献   

5.
The Escherichia coli ribonucleotide reductase (RNR), composed of two subunits (R1 and R2), catalyzes the conversion of nucleotides to deoxynucleotides. Substrate reduction requires that a tyrosyl radical (Y(122)*) in R2 generate a transient cysteinyl radical (C(439)*) in R1 through a pathway thought to involve amino acid radical intermediates [Y(122)* --> W(48) --> Y(356) within R2 to Y(731) --> Y(730) --> C(439) within R1]. To study this radical propagation process, we have synthesized R2 semisynthetically using intein technology and replaced Y(356) with a variety of fluorinated tyrosine analogues (2,3-F(2)Y, 3,5-F(2)Y, 2,3,5-F(3)Y, 2,3,6-F(3)Y, and F(4)Y) that have been described and characterized in the accompanying paper. These fluorinated tyrosine derivatives have potentials that vary from -50 to +270 mV relative to tyrosine over the accessible pH range for RNR and pK(a)s that range from 5.6 to 7.8. The pH rate profiles of deoxynucleotide production by these F(n)()Y(356)-R2s are reported. The results suggest that the rate-determining step can be changed from a physical step to the radical propagation step by altering the reduction potential of Y(356)* using these analogues. As the difference in potential of the F(n)()Y* relative to Y* becomes >80 mV, the activity of RNR becomes inhibited, and by 200 mV, RNR activity is no longer detectable. These studies support the model that Y(356) is a redox-active amino acid on the radical-propagation pathway. On the basis of our previous studies with 3-NO(2)Y(356)-R2, we assume that 2,3,5-F(3)Y(356), 2,3,6-F(3)Y(356), and F(4)Y(356)-R2s are all deprotonated at pH > 7.5. We show that they all efficiently initiate nucleotide reduction. If this assumption is correct, then a hydrogen-bonding pathway between W(48) and Y(356) of R2 and Y(731) of R1 does not play a central role in triggering radical initiation nor is hydrogen-atom transfer between these residues obligatory for radical propagation.  相似文献   

6.
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides and requires a diferric-tyrosyl radical (Y(?)) cofactor to initiate catalysis. The initiation process requires long-range proton-coupled electron transfer (PCET) over 35 ? between the two subunits by a specific pathway (Y(122)(?)→W(48)→Y(356) within β to Y(731)→Y(730)→C(439) within α). The rate-limiting step in nucleotide reduction is the conformational gating of the PCET process, which masks the chemistry of radical propagation. 3-Nitrotyrosine (NO(2)Y) has recently been incorporated site-specifically in place of Y(122) in β2. The protein as isolated contained a diferric cluster but no nitrotyrosyl radical (NO(2)Y(?)) and was inactive. In the present paper we show that incubation of apo-Y(122)NO(2)Y-β2 with Fe(2+) and O(2) generates a diferric-NO(2)Y(?) that has a half-life of 40 s at 25 °C. Sequential mixing experiments, in which the cofactor is assembled to 1.2 NO(2)Y(?)/β2 and then mixed with α2, CDP, and ATP, have been analyzed by stopped-flow absorption spectroscopy, rapid freeze quench EPR spectroscopy, and rapid chemical quench methods. These studies have, for the first time, unmasked the conformational gating. They reveal that the NO(2)Y(?) is reduced to the nitrotyrosinate with biphasic kinetics (283 and 67 s(-1)), that dCDP is produced at 107 s(-1), and that a new Y(?) is produced at 97 s(-1). Studies with pathway mutants suggest that the new Y(?) is predominantly located at 356 in β2. In consideration of these data and the crystal structure of Y(122)NO(2)Y-β2, a mechanism for PCET uncoupling in NO(2)Y(?)-RNR is proposed.  相似文献   

7.
Proton coupled electron transfer (PCET) reactions are important in many biological processes. Tyrosine oxidation/reduction can play a critical role in facilitating these reactions. Two examples are photosystem II (PSII) and ribonucleotide reductase (RNR). RNR is essential in DNA synthesis in all organisms. In E. coli RNR, a tyrosyl radical, Y122(?), is required as a radical initiator. Photosystem II (PSII) generates molecular oxygen from water. In PSII, an essential tyrosyl radical, YZ(?), oxidizes the oxygen evolving center. However, the mechanisms, by which the extraordinary oxidizing power of the tyrosyl radical is controlled, are not well understood. This is due to the difficulty in acquiring high-resolution structural information about the radical state. Spectroscopic approaches, such as EPR and UV resonance Raman (UVRR), can give new information. Here, we discuss EPR studies of PCET and the PSII YZ radical. We also present UVRR results, which support the conclusion that Y122 undergoes an alteration in ring and backbone dihedral angle when it is oxidized. This conformational change results in a loss of hydrogen bonding to the phenolic oxygen. Our analysis suggests that access of water is an important factor in determining tyrosyl radical lifetime and function. TOC graphic.  相似文献   

8.
Proton-coupled electron transfer (PCET) is a fundamental mechanism important in a wide range of biological processes including the universal reaction catalysed by ribonucleotide reductases (RNRs) in making de novo, the building blocks required for DNA replication and repair. These enzymes catalyse the conversion of nucleoside diphosphates (NDPs) to deoxynucleoside diphosphates (dNDPs). In the class Ia RNRs, NDP reduction involves a tyrosyl radical mediated oxidation occurring over 35 Å across the interface of the two required subunits (β2 and α2) involving multiple PCET steps and the conserved tyrosine triad [Y3562)–Y7312)–Y7302)]. We report the synthesis of an active photochemical RNR (photoRNR) complex in which a Re(i)-tricarbonyl phenanthroline ([Re]) photooxidant is attached site-specifically to the Cys in the Y356C-(β2) subunit and an ionizable, 2,3,5-trifluorotyrosine (2,3,5-F3Y) is incorporated in place of Y731 in α2. This intersubunit PCET pathway is investigated by ns laser spectroscopy on [Re356]-β2:2,3,5-F3Y7312 in the presence of substrate, CDP, and effector, ATP. This experiment has allowed analysis of the photoinjection of a radical into α2 from β2 in the absence of the interfacial Y356 residue. The system is competent for light-dependent substrate turnover. Time-resolved emission experiments reveal an intimate dependence of the rate of radical injection on the protonation state at position Y7312), which in turn highlights the importance of a well-coordinated proton exit channel involving the key residues, Y356 and Y731, at the subunit interface.  相似文献   

9.
Escherichia coli class I ribonucleotide reductase catalyzes the conversion of ribonucleotides to deoxyribonucleotides and consists of two subunits: R1 and R2. R1 possesses the active site, while R2 harbors the essential diferric-tyrosyl radical (Y*) cofactor. The Y* on R2 is proposed to generate a transient thiyl radical on R1, 35 A distant, through amino acid radical intermediates. To study the putative long-range proton-coupled electron transfer (PCET), R2 (375 residues) was prepared semisynthetically using intein technology. Y356, a putative intermediate in the pathway, was replaced with 2,3-difluorotyrosine (F2Y, pKa = 7.8). pH rate profiles (pH 6.5-9.0) of wild-type and F2Y-R2 were very similar. Thus, a proton can be lost from the putative PCET pathway without affecting nucleotide reduction. The current model involving H* transfer is thus unlikely.  相似文献   

10.
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides using a diferric tyrosyl radical (Y(122)(?)) cofactor in β2 to initiate catalysis in α2. Each turnover requires reversible long-range proton-coupled electron transfer (PCET) over 35 ? between the two subunits by a specific pathway (Y(122)(?) ? [W(48)?] ? Y(356) within β to Y(731) ? Y(730) ? C(439) within α). Previously, we reported that a β2 mutant with 3-nitrotyrosyl radical (NO(2)Y(?); 1.2 radicals/β2) in place of Y(122)(?) in the presence of α2, CDP, and ATP catalyzes formation of 0.6 equiv of dCDP and accumulates 0.6 equiv of a new Y(?) proposed to be located on Y(356) in β2. We now report three independent methods that establish that Y(356) is the predominant location (85-90%) of the radical, with the remaining 10-15% delocalized onto Y(731) and Y(730) in α2. Pulsed electron-electron double-resonance spectroscopy on samples prepared by rapid freeze quench (RFQ) methods identified three distances: 30 ± 0.4 ? (88% ± 3%) and 33 ± 0.4 and 38 ± 0.5 ? (12% ± 3%) indicative of NO(2)Y(122)(?)-Y(356)(?), NO(2)Y(122)(?)-NO(2)Y(122)(?), and NO(2)Y(122)(?)-Y(731(730))(?), respectively. Radical distribution in α2 was supported by RFQ electron paramagnetic resonance (EPR) studies using Y(731)(3,5-F(2)Y) or Y(730)(3,5-F(2)Y)-α2, which revealed F(2)Y(?), studies using globally incorporated [β-(2)H(2)]Y-α2, and analysis using parameters obtained from 140 GHz EPR spectroscopy. The amount of Y(?) delocalized in α2 from these two studies varied from 6% to 15%. The studies together give the first insight into the relative redox potentials of the three transient Y(?) radicals in the PCET pathway and their conformations.  相似文献   

11.
The β2 subunit of class Ia ribonucleotide reductases (RNR) contains an antiferromagnetically coupled μ-oxo bridged diiron cluster and a tyrosyl radical (Y122?). In this study, an ultraviolet resonance Raman (UVRR) difference technique describes the structural changes induced by the assembly of the iron cluster and by the reduction of the tyrosyl radical. Spectral contributions from aromatic amino acids are observed through UV resonance enhancement at 229 nm. Vibrational bands are assigned by comparison to histidine, phenylalanine, tyrosine, tryptophan, and 3-methylindole model compound data and by isotopic labeling of histidine in the β2 subunit. Reduction of the tyrosyl radical reveals Y122? Raman bands at 1499 and 1556 cm(-1) and Y122 Raman bands at 1170, 1199, and 1608 cm(-1). There is little perturbation of other aromatic amino acids when Y122? is reduced. Assembly of the iron cluster is shown to be accompanied by deprotonation of histidine. A p(2)H titration study supports the assignment of an elevated pK for the histidine. In addition, structural perturbations of tyrosine and tryptophan are detected. For tryptophan, comparison to model compound data suggests an increase in hydrogen bonding and a change in conformation when the iron cluster is removed. pH and (2)H(2)O studies imply that the perturbed tryptophan is in a low dielectric environment that is close to the metal center and protected from solvent exchange. Tyrosine contributions are attributed to a conformational or hydrogen-bonding change. In summary, our work shows that electrostatic and conformational perturbations of aromatic amino acids are associated with metal cluster assembly in RNR. These conformational changes may contribute to the allosteric effects, which regulate metal binding.  相似文献   

12.
Incorporation of 2,3,6-trifluorotyrosine (F(3)Y) and a rhenium bipyridine ([Re]) photooxidant into a peptide corresponding to the C-terminus of the β protein (βC19) of Escherichia coli ribonucleotide reductase (RNR) allows for the temporal monitoring of radical transport into the α2 subunit of RNR. Injection of the photogenerated F(3)Y radical from the [Re]-F(3)Y-βC19 peptide into the surface accessible Y731 of the α2 subunit is only possible when the second Y730 is present. With the Y-Y established, radical transport occurs with a rate constant of 3 × 10(5) s(-1). Point mutations that disrupt the Y-Y dyad shut down radical transport. The ability to obviate radical transport by disrupting the hydrogen bonding network of the amino acids composing the colinear proton-coupled electron transfer pathway in α2 suggests a finely tuned evolutionary adaptation of RNR to control the transport of radicals in this enzyme.  相似文献   

13.
Gemcitabine (2',2'-difluoro-2'-deoxycytidine, dFdC) is a very promising anticancer drug, already approved for clinical use in three therapeutic indications. It is metabolized intracellularly to 5'-diphosphate (dFdCDP), which is known to be a potent inhibitor of ribonucleotide reductase (RNR). Although several nucleotide analogs show in vitro capacity of RNR inactivation, none has shown the in vivo efficacy of dFdCDP. Accordingly, the experimental data suggests that its mechanism of inhibition is different from the other known RNR suicide inhibitors. Enzyme inhibition in the absence of reductive species leads to complete loss of the essential radical in subunit R2, and formation of a new nucleotide-based radical. Interestingly, however, the presence of the reductants does not prevent inhibition--the radical is not lost but the targeted subunit of RNR becomes R1, which is inactivated possibly by alkylation. We have conducted a theoretical study, which led us to the first proposal of a possible mechanism for RNR inhibition by dFdCDP in the absence of reductants. This mechanism turned out to be very similar to the natural substrate reduction pathway and only deviates from the natural course after the formation of the well-known disulphide bridge. This deviation is caused precisely by the F atom in the beta-face, only present in this inhibitor. The essential radical in R2 is lost, and so is the enzyme catalytic activity. The nucleotide-based radical that constitutes the end product of our mechanism has been suggested in the literature as a possible candidate for the one detected experimentally. In fact, all experimental data available has been reproduced by the theoretical calculations performed here.  相似文献   

14.
15.
This paper focuses on the inhibition of ribonucleotide reductase (RNR) by gemcitabine, 2',2'-difluoro-2'-deoxycytidine (dFdC), a deoxycytidine analogue that is a very active drug against solid tumors and is currently commercialized as gemzar. RNR inactivation is reductant-dependent and occurs in a very different way from that of other known substrate analogues. In the presence of reductants monomer R1 of RNR is inhibited, whereas in the absence of reductants the radical is lost and monomer R2 is inhibited. As inside the cell reductants are available, it is likely that R1 inactivation is the most favorable mechanism responsible for drug cytotoxicity. This inhibition pathway has been unknown to date, but we have conducted a theoretical study that has led us to the first proposal of a mechanism for RNR inhibition by dFdC in the presence of reductants.  相似文献   

16.
A set of N-acylated, carboxyamide fluorotyrosine (F(n)()Y) analogues [Ac-3-FY-NH(2), Ac-3,5-F(2)Y-NH(2), Ac-2,3-F(2)Y-NH(2), Ac-2,3,5-F(3)Y-NH(2), Ac-2,3,6-F(3)Y-NH(2) and Ac-2,3,5,6-F(4)Y-NH(2)] have been synthesized from their corresponding amino acids to interrogate the detailed reaction mechanism(s) accessible to F(n)()Y*s in small molecules and in proteins. These Ac-F(n)()Y-NH(2) derivatives span a pK(a) range from 5.6 to 8.4 and a reduction potential range of 320 mV in the pH region accessible to most proteins (6-9). DFT electronic-structure calculations capture the observed trends for both the reduction potentials and pK(a)s. Dipeptides of the methyl ester of 4-benzoyl-l-phenylalanyl-F(n)()Ys at pH 4 were examined with a nanosecond laser pulse and transient absorption spectroscopy to provide absorption spectra of F(n)()Y*s. The EPR spectrum of each F(n)()Y* has also been determined by UV photolysis of solutions at pH 11 and 77 K. The ability to vary systematically both pK(a) and radical reduction potential, together with the facility to monitor radical formation with distinct absorption and EPR features, establishes that F(n)()Ys will be useful in the study of biological charge-transport mechanisms involving tyrosine. To demonstrate the efficacy of the fluorotyrosine method in unraveling charge transport in complex biological systems, we report the global substitution of tyrosine by 3-fluorotyrosine (3-FY) in the R2 subunit of ribonucleotide reductase (RNR) and present the EPR spectrum along with its simulation of 3-FY122*. In the companion paper, we demonstrate the utility of F(n)()Ys in providing insight into the mechanism of tyrosine oxidation in biological systems by incorporating them site-specifically at position 356 in the R2 subunit of Escherichia coli RNR.  相似文献   

17.
Proton-coupled electron transfer (PCET) is an elementary chemical reaction crucial for biological oxidoreduction. We perform quantum chemical calculations to study the direct and water-mediated PCET between two stacked tyrosines, TyrO(?) + TyrOH → TyrOH + TyrO(?), to mimic a key step in the catalytic reaction of class Ia ribonucleotide reductase (RNR). The energy surfaces of electronic ground and excited states are separated by a large gap of ~20 kcal mol(-1), indicative of an electronically adiabatic transfer mechanism. In response to chemical substitutions of the proton donor, the energy of the transition state for direct PCET shifts by exactly half of the change in energetic driving force, resulting in a linear free energy relation with a Br?nsted slope of ?. In contrast, for water-mediated PCET, we observe integer Br?nsted slopes of 1 and 0 for proton acceptor and donor modifications, respectively. Our calculations suggest that the π-stacking of the tyrosine dimer in RNR results in strong electronic coupling and adiabatic PCET. Water participation in the PCET can be identified perturbatively in a Br?nsted analysis.  相似文献   

18.
Several 2'-substituted-2'-deoxyribonucleotides are potent time-dependent inactivators of the enzyme ribonucleotide reductase (RNR), which function by destructing its essential tyrosil radical and/or by performing covalent addition to the enzyme. The former leads to inhibition of the R2 dimer of RNR and the latter to inhibition of the R1 dimer. Efforts to elucidate the mechanism of inhibition have been undertaken in the last decades, and a general mechanistic scheme has emerged. Accordingly, two alternative pathways lead either to the inhibition of R1 or R2, for which the 2'-chloro-2'-deoxynucleotides serve as the model for the inhibition of R1 and the 2'-azido-2'-deoxynucleotides the model for the inhibition of R2. However, the underlying reason for the different behavior of the inhibitors has remained unknown until now. Moreover, a fundamental mechanistic alternative has been proposed, based on results from biomimetic reactions, in which the 2'-substituents would be eliminated as radicals, and not as anions, as previously assumed. This would lead to further reactions not predicted by the existing mechanistic scheme. To gain a better understanding we have performed high-level theoretical calculations on the active site of RNR. Results from this work support the general Stubbe's paradigm, although some changes to that mechanism are necessary. In addition, a rational explanation of the factors that determine which of the dimers (R1 or R2) will be inactivated is provided for the first time. It has been demonstrated also that the 2'-substituents are indeed eliminated as anions, and not as radicals. Biomimetic experiments have led to different results because they lack a basic group capable of deprotonating the 3'-HO group of the substrate. It has been found here that the chemical character of the leaving group (radical or anionic) can be manipulated by controlling the protonation state of the 3'-HO group.  相似文献   

19.
(E)-2'-Fluoromethylene-2'-deoxycitidine-5'-diphosphate (FMCDP) is a potent time-dependent inactivator of the enzyme Ribonucleotide Reductase, which operates by destructing an essential tyrosil radical and performing a covalent addition to an active site residue. Considerable effort to elucidate the inhibition mechanism has been undertaken in recent years, and some insights have been obtained. Although a mechanistic proposal has been put forward, based on a general paradigm of inhibition of RNR by 2' substituted substrate analogues, details about the mechanism have remained elusive. Namely, the exact residue that adds to the inhibitor is still not identified, although mutagenesis experiments suggest that it should correspond to the E441 residue. In this work, we performed an extensive theoretical exploration of the potential energy surface of a model system representing the active site of RNR with FMCDP, using Density Functional Theory. This study establishes the detailed mechanism of inhibition, which is considerably different from the one proposed earlier. The proposed mechanism is fully consistent with available experimental data. Energetic results reveal unambiguously that the residue adding to the inhibitor is a cysteine, most probably C439, and exclude the possibility of the addition of E441. However, the E441 residue is shown to be essential for inhibition, catalyzing both the major and minor inhibition pathways, in agreement with mutagenesis results. It is shown also that the major mode of inactivation mimics the early stages of the natural substrate pathway.  相似文献   

20.
Rhenium(I) polypyridyl complexes have been designed for the intramolecular photogeneration of tyrosyl radical. Tyrosine (Y) and phenylalanine (F) have each been separately appended to a conventional Re(I)(bpy)(CO)(3)CN framework via an amide linkage to the bipyridine (bpy) ligand. Comparative time-resolved emission quenching and transient absorption spectra of Re(bpy-Y)(CO)(3)CN and Re(bpy-F)(CO)(3)CN show that Y is oxidized only upon its deprotonation at pH 12. In an effort to redirect electron transport so that it is more compatible with intramolecular Y oxidation, polypyridyl Re(I) complexes have been prepared with the amide bond functionality located on a pendant phosphine ligand. A [Re(phen)(PP-Bn)(CO)(2)](PF(6)) (PP = bis(diphenylphosphino)ethylene) complex has been synthesized and crystallographically characterized. Electrochemistry and phosphorescence measurements of this complex indicate a modest excited-state potential for tyrosine oxidation, similar to that for the (bpy)Re(I)(CO)(3)CN framework. The excited-state oxidation potential can be increased by introducing a monodentate phosphine to the Re(I)(NN)(CO)(3)(+) framework (NN = polypyridyl). In this case, Y is oxidized at all pHs when appended to the triphenylphosphine (P) of [Re(phen)(P-Y)(CO(3))](PF(6)). Analysis of the pH dependence of the rate constant for tyrosyl radical generation is consistent with a proton-coupled electron transfer (PCET) quenching mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号