首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical diffraction grating and micro Fresnel zone plate type structures were fabricated in relatively thin poly(dimethylsiloxane) (PDMS) layers using proton beam writing technique and the performance of these optical devices was tested. PDMS is a commonly used silicon-based organic polymer, optically clear, generally considered to be inert, non-toxic and biocompatible. PDMS has been used as a resist material for direct-write techniques only in very few cases. In this work, PDMS was used as a resist material; the structures were irradiated directly into the polymer. We were looking for a biocompatible, micropatternable polymer in which the chemical structure changes significantly due to proton beam exposure making the polymer capable of proton beam writing. We demonstrated that the change in the structure of the polymer is so significant that there is no need to perform any development processes. The proton irradiation causes refractive index change in the polymer, so diffraction gratings and other optical devices like Fresnel zone plates can be fabricated in this way. The observed high order diffraction patterns prove the high quality of the created optical devices.  相似文献   

2.
《Composite Interfaces》2013,20(3-4):291-306
Intermolecular interactions determine the reinforcement of polydimethylsiloxane (PDMS) elastomers by fumed silica, and a water interlayer on the fumed silica/PDMS interface may act as a lubricant, decreasing the interaction energy and promoting the PDMS molecule motion over the filler surface. A quantum-chemical (QCh) modelling has been performed to study a microscopic aspect of water impact on the intermolecular interactions in the system. The results obtained for a series of superclusters simulating fragments of the real silica filler surface, both hydroxylated and silylated, interacting with five-member PDMS oligomer in presence of individual water molecules and of a 'water drop', of several H-bonded water molecules, are in good agreement with results from IGC adsorption experiments.  相似文献   

3.
Ultrasonic irradiation has been proposed as a novel approach for degradation of polymer compounds, especially considering the fact that the reduction in the molecular weight (also the intrinsic viscosity) is simply by splitting the most susceptible chemical bond without causing any changes in the chemical nature. An overview of the application of ultrasound for the polymer degradation has been presented in this work, discussing the mechanism of degradation, kinetic modeling, effect of operating parameters and the type of reactors generally used for depolymerization. The effect of important operating parameters such as initial polymer concentration, presence of functional groups in the polymer chain, reaction volume, initial molecular weight, temperature, operating frequency, power dissipation and use of process intensifying additives have been discussed also giving guidelines about selection of the optimum parameters. It has been observed that the low concentrations and higher power dissipation (till an optimum) are favorable resulting in higher extents of degradation. Typically low frequency is recommended but for the case of water soluble polymers, higher frequencies would also give similar results due to the dominant action of chemical effects of cavitation. It has been demonstrated that the alkyl group substituent also affects the degradation rate of polymer. An overview of degradation using combined approach based on ultrasound and additives with comparison with individual approach has also been presented. It has been observed that the main contributing factor for the synergy of the combined approach is the selection of optimum loading of additives. Overall, it has been observed that efficient polymer degradation can be achieved using combined process based on the use of ultrasound.  相似文献   

4.
瞿述  ;彭景翠 《中国物理快报》2008,25(8):3052-3055
Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescence devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(S-hydroxyquinoline) aluminium. The capacitance voltage (C - V), capacitance-frequency (C - F), current-voltage (I - V), radiation intensity-voltage (R - V) and luminance eFficiency-voltage (E - V) measurements are systematically studied to investigate the conductivity, Fermi alignment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function of PDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface.  相似文献   

5.
Micropatterning and transferring of polymeric semiconductor thin films by hot lift-off and polymer bonding lithography in fabrication of OFETs with polymeric dielectric on the flexible substrate was proposed. The desired polymeric semiconductor patterns were fabricated on the flat polydimethylsiloxane (PDMS) surface with a selective lift-off method we proposed previously. The isolated and well defined polymeric semiconductor patterns left on the flat PDMS surface can be further transferred to the gate polymeric dielectric surface by polymer bonding lithography due to the low interfacial energy of PDMS. The transistor fabricated with this ‘dry’ process has a higher field-effect mobility compared with that using spin coated semiconductor layer.  相似文献   

6.
Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.  相似文献   

7.
The mesoscopic modeling of three polysiloxanes in solution is reported in this work, with the purpose of predicting their physicochemical properties as functions of the quality of the solvent, so that a judicious choice of polymer/solvent can be made for various applications. The polymers studied were the following polysiloxanes: polydimethylsiloxane (PDMS), polysiloxane with a bulky alkyl side group (PMHS) and a siloxane copolymer with a hydrophilic polar side group (P2DMPAS). The model used and solved through numerical simulations is the one known as dissipative particle dynamics. Density profiles and radial distribution functions were calculated for each system. We analyzed how the polymers behave in the presence of solvents of varying quality and compared their behavior with experimental data. We observed that we could replicate the behavior in good solvents for PDMS and PMHS. We also observed in the simulation box the formation of pseudo-micelles for P2DMPAS.  相似文献   

8.
管新蕾  王维  姜楠 《物理学报》2015,64(9):94703-094703
基于相同雷诺数下清水和高分子聚合物溶液壁湍流的高时间分辨率粒子图像测速技术(time-resolved particle image velocimetry, TRPIV)的对比实验, 从高聚物溶液对湍流边界层动量能量输运影响的角度分析其减阻的机理. 对比两者的雷诺应力发现高聚物的存在抑制了湍流输运过程. 这一影响与高聚物对壁湍流中占主导地位的涡旋运动和低速条带等相干结构的作用密切相关. 运用条件相位平均、相关函数和线性随机估计(linear stochastic estimation, LSE)等方法, 分析提取了高聚物溶液流场中的发卡涡和发卡涡包等典型相干结构的空间拓扑形态. 相比于清水, 高聚物溶液中相干结构的流向尺度增大, 涡旋运动的发展及低速流体喷射的强度受到削弱, 表明了添加的高聚物阻碍了湍流原有的能量传递和自维持的机理. 正是通过影响相干结构, 高聚物抑制了湍流边界层中近壁区与外区之间的动量和能量输运, 使得湍流的无序性降低, 从而减小了湍流流动的阻力.  相似文献   

9.
In this study, we have fabricated a multilayer system consisting of 3-glycidoxypropyldimethylmethoxysilane (GPDS), poly(dimethylsiloxane) bis 3-aminopropyl terminated (PDMS) and protein-A on a silicon wafer surface for oriented immobilization of immunoglobilin G (IgG). The multilayer system with a different component in each layer was characterized by ellipsometry, contact-angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) and fluorescence microscopy. The epoxy-terminated monolayer was formed by the chemisorption of GPDS molecules on the hydroxylated silicon surface. The PDMS film about 4.5 nm thick was produced on the GPDS-monolayer by the chemical reaction between the amine groups at the end of PDMS chain and the epoxy groups of GPDS molecules. By introducing the PDMS chains, the hydrophilic character of GPDS-monolayer decreased. Study of the time dependence of polymer grafting showed that the chemisorption of GPDS is fast, whereas at least 16 h is needed to generate the homogeneous PDMS layer. For immobilization of IgG molecules in a highly oriented manner, protein-A molecules were first chemically bound to an ultrathin (∼4.5 nm) PDMS reactive polymer layer and later used to capture IgG. It was shown that the existence of protein-A in the multilayer system has a strong influence on the binding properties of IgG not only in the efficiency of binding, but also in its specificity. In conclusion, the multilayer system with protein-A has the potential to be further developed into an efficient immunoassay protein chip.  相似文献   

10.
We present the compatibility of elastomeric stamp, poly(dimethylsiloxane) (PDMS), with inks for non-photolithography. This ink limitation is important in considering the lamination of hydrophilic solution on the patterned ink surface using an elastomeric stamp. We focus on an increase of the hydrophobicity of the patterned surface due to diffusion of low molecular weight (LMW) silicone polymer chains. This hydrophobicity increases inversely with the PDMS–ink interaction parameter (χ), which is correlated with the solubility parameter (δ). This study's results translate into proposed design factors for ink used in the patterned functional layer for PDMS-based lithography. Both the XPS and the contact angle measurement show that the hydrophobicity can be increased by LMW PDMS chains transfer from stamps, and this increase can cause the expansion of the free volume in PDMS pores through a swelling effect.  相似文献   

11.
This paper describes a cost-effective approach to fabricate intricate arrays of polydimethylsiloxane (PDMS) and polymeric microstructures based on porous polystyrene (PS) films generated from arrays of water droplets. To start, a thin layer of ethanol film is exposed to a humid air flow. Upon the evaporation of ethanol and simultaneous condensation of water as the ethanol phase recedes, a Marangoni flow causes the flow of liquid from the ethanol phase into water fingers emerged along the receding contact line, which finally detach to form ordered water droplet arrays behind the receding contact line. The water droplet arrays are subsequently used as templates to generate porous PS films. The porous PS films are then used as sacrificial layers and masters to fabricate various arrays of PDMS dots and PDMS stamps with posts, respectively. The PDMS stamps containing various microstructures are further utilized to create polymer rings, PDMS dots, porous PDMS films, and PDMS aperture rings, and for contact printing of patterns of self-assembled monolayers.  相似文献   

12.
Suspensions of nanosized hairy grains have been prepared by grafting long polydimethylsiloxane chains (molecular weight ) onto silica particles (radius ), dispersed into a good solvent of PDMS. Depending on the particle volume fraction, different rheological behaviors are observed. In the very dilute regime, the suspensions are perfectly stable and the particles behave almost as hard spheres: flow penetration inside the corona is then very weak. When the particle volume fraction goes to the close packing volume fraction, the suspension viscosity does not diverge as for hard spheres due to the increase of flow penetration inside the corona and to corona entanglements. The particles have then the same behavior as polymer stars having an intermediate number of arms (). Finally, in the concentrated regime (), the suspensions form irreversible gels. We shown that this unexpected gelation phenomenon is related to the presence of the silica cores: grafted PDMS chains can adsorb onto different particles and form irreversible bonds between the cores. The viscosity and elastic modulus evolutions during gelation are well described by the scalar percolation model of sol-gel transition. Received 23 March 1998  相似文献   

13.
We investigate numerically the dynamical behaviour of a polymer chain collapsing in a dilute solution. The rate of collapse is measured with and without the presence of hydrodynamic interactions. We find that hydrodynamic interactions both accelerate polymer collapse and alter the folding pathway.  相似文献   

14.
To study the role of the solvent and of the laser fluence in the matrix-assisted pulsed laser evaporation (MAPLE) process, we used a soft polymer (polydimethylsiloxane—PDMS) as “sensing surface” and toluene as solvent. Thin films of the PDMS polymer were placed in the position of the growing film, while a frozen toluene target was irradiated with an ArF laser at the conventional fluences used in MAPLE depositions (60–250 mJ/cm2). Apart the absence of solute, the MAPLE typical experimental conditions for the deposition of thin organic layers were tested. The effects on the PDMS films of the toluene target ablation, at different fluences, were studied using atomic force microscopy and contact angles measurements. The results were compared with the effects produced on similar PDMS films by four different treatments (exposure to a drop of the solvent, to saturated toluene vapors and to plasma sources of two different powers). From this comparative study, it appears that depending on the MAPLE experimental conditions: (1) the MAPLE process may be “semidry” rather than purely dry (namely the solvent is likely to be present in the deposition environment near the growing film), (2) the solvent, if sufficiently volatile, is in form of vapor molecules (neutral, ionized and probably dissociated) rather than in liquid phase near the substrate and (3) at relatively high laser fluences (>150 mJ/cm2), the formation of an intense plasma plume results which can damage/affect a soft substrate as well as a growing polymer film.  相似文献   

15.
Y.L. Wu  Z. Chen 《Applied Surface Science》2008,254(21):6952-6958
It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol-gel technology and a low volume medium pressure (LVMP) spray process. The sol-gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol-gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures.  相似文献   

16.
It is well known that the morphology of block copolymer aggregates depends on polymer properties such as the molecular weight, the relative block length, and the chemical nature of the repeat unit. Recently, we have shown that if aggregates are allowed to self-assemble in solution, then in addition to the above factors, a high degree of control over the aggregate architecture can be achieved by adjusting the solution conditions. Factors such as the water content in the solvent mixture, the solvent nature and composition, the presence of additives (ions, surfactants, and homopolymer) and the polymer concentration were successfully employed to control the aggregate shape and size. In this paper, we review a series of studies performed in our group to show how solution properties can control the architecture of aggregates prepared from a given copolymer. The control mechanism is explained in terms of the effect of each property on the forces that govern the formation of any given morphology, namely the core-chain stretching, corona-chain repulsion and interfacial tension. Received 30 April 2002 and Received in final form 3 September 2002 Published online: 21 January 2003  相似文献   

17.
We find the femtosecond laser induced microripple beside the focused femtosecond laser spot and along the movement direction of the laser spot on polydimethylsiloxane (PDMS) surface. The microripple may be due to the melting of PDMS induced by femtosecond laser pulses and the subsequent cool-down solidification of the melting PDMS along with the movement of the femtosecond laser spot. This result will be helpful to understand the interaction between the femtosecond laser and the polymer.  相似文献   

18.
Iron disulfide reactivity relative to the components of composite polymer electrolytes based on chlorinated polyvinylchloride has been studied by taking differential infrared (IR) spectra. It has been shown that iron-containing admixtures on iron disulfide surface can initiate the decomposition processes of polymer systems. Possibility of diffusion to the volume of liquid electrolyte of surface iron—comprising compounds of different composition—has been shown. In the presence of lithium salts, these admixtures initiate the destruction processes of plasticizing additives and polymer matrix. The disclosed effects of interaction enable optimization of polymer electrolyte composition for the further use in the power source of Li–FeS2 system and to develop a complex of procedures connected with the preliminary treatment (thermal or chemical) of pyrite aimed at the modification of its surface properties.  相似文献   

19.
The cross-linked networks of linear vinyl-terminated poly(dimethylsiloxane) (PDMS) with trimethylsiloxy-terminated methyhydrosiloxane–dimethylsiloxane copolymer (cross-linker) were investigated by tuning the cross-linker concentration, the chain length of linear PDMS and the functionality of the cross-linker. Response time and elastic modulus of the cross-linked PDMS elastomer were characterized by home-made measurement systems and analyzed based on their network topologies. An optimized PDMS elastomer, which has response time of 9 μs and elastic modulus of 601 kPa, was utilized as the actuation material in a MEMS spatial light modulator (SLM). The fabrication processes were described. This polymer based SLM has shown fast response time (9 μs) and successfully diffracted light into higher orders with 84% first-order diffraction efficiency.  相似文献   

20.
Using direct numerical simulations of turbulent plane channel flow of homogeneous polymer solutions, described by the Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model, a-priori analyses of the filtered momentum and FENE-P constitutive equations are performed. The influence of the polymer additives on the subgrid-scale (SGS) energy is evaluated by comparing the Newtonian and the viscoelastic flows, and a severe suppression of SGS stresses and energy is observed in the viscoelastic flow. All the terms of the transport equation of the SGS kinetic energy for FENE-P fluids are analysed, and an approximated version of this equation for use in future large eddy simulation closures is suggested. The terms responsible for kinetic energy transfer between grid-scale (GS) and SGS energy (split into forward/backward energy transfer) are evaluated in the presence of polymers. It is observed that the probability and intensity of forward scatter events tend to decrease in the presence of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号