首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Wall-bounded turbulent flows over surfaces with spanwise heterogeneous surface roughness – that is, spanwise-adjacent patches of relatively high and low roughness – exhibit mean flow phenomena entirely different to what would otherwise exist in the absence of spanwise heterogeneity. In the outer layer, mean counter-rotating rolls occupy the depth of the flow, and are positioned such that “upwelling” and “downwelling” occurs above the low and high roughness, respectively. It has been comprehensively shown that these secondary flows are Prandtl’s secondary flow of the second kind (Anderson et al., J. Fluid Mech. 768, 316–347 2015). This behaviour indicates that spanwise spacing, s y , between adjacent patches of high and low roughness is, itself, a problem parameter; in this study, we have systematically assessed how s y affects turbulence structure in high Reynolds number channel flows via two-point correlations. “High roughness” is imposed with streamwise-aligned pyramid elements with height, h, selected to be ≈ 5% of the channel half height, H. For \(s_{y}/H \gtrsim 1\), we find that the aforementioned domain-scale mean circulations exist and the surface may be regarded as a topography. For s y /H ? 0.2, turbulence statistics show characteristics very similar to a homogeneous roughness and thus the surface may be regarded as a roughness. For 0.2 ? s y /H ? 2, the spatial extent of the counter-rotating rolls is controlled by proximity to adjacent rows, and we define such surfaces as being intermediate. We refer to such surfaces as intermediate state.  相似文献   

2.
In a bounded domain \({\Omega \subset \mathbb R^2}\) with smooth boundary we consider the problem
$\Delta u = 0 \quad {\rm{in }}\, \Omega, \qquad \frac{\partial u}{\partial \nu} = \frac1\varepsilon f(u) \quad {\rm{on }}\,\partial\Omega,$
where ν is the unit normal exterior vector, ε > 0 is a small parameter and f is a bistable nonlinearity such as f(u) = sin(π u) or f(u) = (1 ? u 2)u. We construct solutions that develop multiple transitions from ?1 to 1 and vice-versa along a connected component of the boundary ?Ω. We also construct an explicit solution when Ω is a disk and f(u) = sin(π u).
  相似文献   

3.
The linear stability of the double-diffusive convection in a horizontal porous layer is studied considering the upper boundary to be open. A horizontal temperature gradient is applied along the upper boundary. It is assumed that the viscous dissipation and Soret effect are significant in the medium. The governing parameters are horizontal Rayleigh number (\(Ra_\mathrm{H}\)), solutal Rayleigh number (\(Ra_\mathrm{S}\)), Lewis number (Le), Gebhart number (Ge) and Soret parameter (Sr). The Rayleigh number (Ra) corresponding to the applied heat flux at the bottom boundary is considered as the eigenvalue. The influence of the solutal gradient caused due to the thermal diffusion on the double-diffusive instability is investigated by varying the Soret parameter. A horizontal basic flow is induced by the applied horizontal temperature gradient. The stability of this basic flow is analyzed by calculating the critical Rayleigh number (\(Ra_\mathrm{cr}\)) using the Runge–Kutta scheme accompanied by the Shooting method. The longitudinal rolls are more unstable except for some special cases. The Soret parameter has a significant effect on the stability of the flow when the upper boundary is at constant pressure. The critical Rayleigh number is decreasing in the presence of viscous dissipation except for some positive values of the Soret parameter. How a change in Soret parameter is attributing to the convective rolls is presented.  相似文献   

4.
The analysis of the group properties and the search for self-similar solutions in problems of mathematical physics and continuum mechanics have always been of interest, both theoretical and applied [1–3]. Self-similar solutions of parabolic problems that depend only on a variable of the type η = x/√t are classical fundamental solutions of the one-dimensional linear and nonlinear heat conduction equations describing numerous physical phenomena with initial discontinuities on the boundary [4]. In this study, the term “generalized vortex diffusion” is introduced in order to unify the different processes in mechanics modeled by these problems. Here, vortex layer diffusion and vortex filament diffusion in a Newtonian fluid [5] can serve as classical hydrodynamic examples. The cases of self-similarity with respect to the variable η are classified for fairly general kinematics of the processes, physical nonlinearities of the medium, and types of boundary conditions at the discontinuity points. The general initial and boundary value problem thus formulated is analyzed in detail for Newtonian and non-Newtonian power-law fluids and a medium similar in behavior to a rigid-ideally plastic body. New self-similar solutions for the shear stress are derived.  相似文献   

5.
A numerical analysis is provided to scrutinize time-dependent magnetohydrodynamics(MHD) free and forced convection of an electrically conducting non-Newtonian Casson nanofluid flow in the forward stagnation point region of an impulsively rotating sphere with variable wall temperature. A single-phase flow of nanofluid model is reflected with a number of experimental formulae for both effective viscosity and thermal conductivity of nanofluid. Exceedingly nonlinear governing partial differential equations(PDEs)subject to their compatible boundary conditions are mutated into a system of nonlinear ordinary differential equations(ODEs). The derived nonlinear system is solved numerically with implementation of an implicit finite difference procedure merging with a technique of quasi-linearization. The controlled parameter impacts are clarified by a parametric study of the entire flow regime. It is depicted that from all the exhibited nanoparticles,Cu possesses the best convection. The surface heat transfer and surface shear stresses in the x-and z-directions are boosted with maximizing the values of nanoparticle solid volume fraction ? and rotation λ. Besides, as both the surface temperature exponent n and the Casson parameter γ upgrade, an enhancement of the Nusselt number is given.  相似文献   

6.
The n-fold Darboux transformation \(T_{n}\) of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues \(\lambda _{j}\) and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n-positon solutions of the focusing mKdV equation are obtained in the special limit \(\lambda _{j}\rightarrow \lambda _{1}\), from the corresponding n-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n-positon solution into n single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated.  相似文献   

7.
In 2000 Constantin showed that the incompressible Euler equations can be written in an “Eulerian–Lagrangian” form which involves the back-to-labels map (the inverse of the trajectory map for each fixed time). In the same paper a local existence result is proved in certain Hölder spaces \({C^{1,\mu}}\). We review the Eulerian–Lagrangian formulation of the equations and prove that given initial data in H s for \({n \geq 2}\) and \({s > \frac{n}{2}+1}\), a unique local-in-time solution exists on the n-torus that is continuous into H s and C 1 into H s-1. These solutions automatically have C 1 trajectories. The proof here is direct and does not appeal to results already known about the classical formulation. Moreover, these solutions are regular enough that the classical and Eulerian–Lagrangian formulations are equivalent, therefore what we present amounts to an alternative approach to some of the standard theory.  相似文献   

8.
A spatially two-dimensional sixth order PDE describing the evolution of a growing crystalline surface h(xyt) that undergoes faceting is considered with periodic boundary conditions, as well as its reduced one-dimensional version. These equations are expressed in terms of the slopes \(u_1=h_{x}\) and \(u_2=h_y\) to establish the existence of global, connected attractors for both equations. Since unique solutions are guaranteed for initial conditions in \(\dot{H}^2_{per}\), we consider the solution operator \(S(t): \dot{H}^2_{per} \rightarrow \dot{H}^2_{per}\), to gain our results. We prove the necessary continuity, dissipation and compactness properties.  相似文献   

9.
An analytical framework is developed for passing to the homogenisation limit in (not necessarily convex) variational problems for composites whose material properties oscillate with a small period ε and that exhibit high contrast of order \({\varepsilon^{-1}}\) between the constitutive, “stress-strain”, response on different parts of the period cell. The approach of this article is based on the concept of “two-scale Γ-convergence”, which is a kind of “hybrid” of the classical Γ-convergence (De Giorgi and Franzoni in Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur (8)58:842–850, 1975) and the more recent two-scale convergence (Nguetseng in SIAM J Math Anal 20:608–623, 1989). The present study focuses on a basic high-contrast model, where “soft” inclusions are embedded in a “stiff” matrix. It is shown that the standard Γ-convergence in the L p -space fails to yield the correct limit problem as \({\varepsilon \to 0,}\) due to the underlying lack of L p -compactness for minimising sequences. Using an appropriate two-scale compactness statement as an alternative starting point, the two-scale Γ-limit of the original family of functionals is determined via a combination of techniques from classical homogenisation, the theory of quasiconvex functions and multiscale analysis. The related result can be thought of as a “non-classical” two-scale extension of the well-known theorem by Müller (Arch Rational Mech Anal 99:189–212, 1987).  相似文献   

10.
The flow induced by an impermeable flat surface executing orthogonal stretching and orthogonal shearing in a rotating fluid system is investigated. Both the stretching and shearing are linear in the coordinates. An exact similarity reduction of the Navier–Stokes equations gives rise to a pair of nonlinearly-coupled ordinary differential equations governed by three parameters. In this study we set one parameter and analyze the problem which leads to flow for an impermeable surface with shearing and stretching due to velocity u along the x-axis of equal strength a while the shearing and stretching due to velocity v along the y-axis of equal strength b. These solutions depend on two parameters—a Coriolis (rotation) parameter \(\sigma = \Omega /a\) and a stretching/shearing ratio \(\lambda =b/a\). A symmetry in solutions is found for \(\lambda = 1\). The exact solution for \(\sigma = 0\) and the asymptotic behavior of solutions for \(|\sigma | \rightarrow \infty\) are determined and compared with numerical results. Oscillatory solutions are found whose strength increases with increasing values of \(|\sigma |\). It is shown that these solutions tend to the well-known Ekman solution as \(|\sigma | \rightarrow \infty\).  相似文献   

11.
The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide (\(\hbox {Al}_{2} \hbox {O}_{3}\))–water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the implicit backward difference scheme is used in time direction. The results are obtained for Rayleigh (Ra), Hartmann (Ha) numbers, and nanoparticles volume fractions (\(\phi\)), in the ranges of \(10^3 \le Ra \le 10^7\), \(0\le Ha \le 500\) and \(0 \le \phi \le 0.2\), respectively. The streamlines and microrotation contours are observed to show similar behaviors with altering magnitudes. For low Ra values, when \(Ha=0\), symmetric vortices near the walls and a central vortex in opposite direction are observed in vorticity. As Ra increases, the central vortex splits into two due to the circulation in the effect of the buoyant flow. Boundary layer formation is observed when Ha increases for almost all Rayleigh numbers in both streamlines and vorticity. The isotherms have horizontal profiles for high Ra values owing to convective dominance over conduction. As Ha is increased, the convection effect is reduced, and isotherms tend to have vertical profiles. This study presents the first FEM application for solving highly nonlinear PDEs defining micropolar nanofluid flow especially for large values of Rayleigh and Hartmann numbers.  相似文献   

12.
Let Ω be a bounded smooth domain in \({{R}^N, N \geqq 2}\), and let us denote by d(x) the distance function d(x, ?Ω). We study a class of singular Hamilton–Jacobi equations, arising from stochastic control problems, whose simplest model is
$ - \alpha \Delta u+ u + \frac{\nabla u \cdot B (x)}{d (x)}+ c(x) |\nabla u|^2=f (x) \quad {\rm in}\,\Omega, $
where f belongs to \({W^{1,\infty}_{\rm loc} (\Omega)}\) and is (possibly) singular at \({\partial \Omega, c\in W^{1,\infty} (\Omega)}\) (with no sign condition) and the field \({B\in W^{1,\infty} (\Omega)^N}\) has an outward direction and satisfies \({B\cdot \nu\geqq \alpha}\) at ?Ω (ν is the outward normal). Despite the singularity in the equation, we prove gradient bounds up to the boundary and the existence of a (globally) Lipschitz solution. We show that in some cases this is the unique bounded solution. We also discuss the stability of such estimates with respect to α, as α vanishes, obtaining Lipschitz solutions for first order problems with similar features. The main tool is a refined weighted version of the classical Bernstein method to get gradient bounds; the key role is played here by the orthogonal transport component of the Hamiltonian.
  相似文献   

13.
We consider the elliptic equation \(-\Delta u +u =0\) with nonlinear boundary condition \(\frac{\partial u}{\partial n}= \lambda u + g(\lambda ,x,u), \) where \(\frac{g(\lambda ,x,s)}{s} \rightarrow 0, \hbox { as }|s|\rightarrow \infty \) and g is oscillatory. We provide sufficient conditions on g for the existence of unbounded sequences of stable solutions, unstable solutions, and turning points, even in the absence of resonant solutions.  相似文献   

14.
The linearized pressure Poisson equation (LPPE) is used in two and three spatial dimensions in the respective matrix-forming solution of the BiGlobal and TriGlobal eigenvalue problem in primitive variables on collocated grids. It provides a disturbance pressure boundary condition which is compatible with the recovery of perturbation velocity components that satisfy exactly the linearized continuity equation. The LPPE is employed to analyze instability in wall-bounded flows and in the prototype open Blasius boundary layer flow. In the closed flows, excellent agreement is shown between results of the LPPE and those of global linear instability analyses based on the time-stepping nektar++, Semtex and nek5000 codes, as well as with those obtained from the FreeFEM++ matrix-forming code. In the flat plate boundary layer, solutions extracted from the two-dimensional LPPE eigenvector at constant streamwise locations are found to be in very good agreement with profiles delivered by the NOLOT/PSE space marching code. Benchmark eigenvalue data are provided in all flows analyzed. The performance of the LPPE is seen to be superior to that of the commonly used pressure compatibility (PC) boundary condition: at any given resolution, the discrete part of the LPPE eigenspectrum contains converged and not converged, but physically correct, eigenvalues. By contrast, the PC boundary closure delivers some of the LPPE eigenvalues and, in addition, physically wrong eigenmodes. It is concluded that the LPPE should be used in place of the PC pressure boundary closure, when BiGlobal or TriGlobal eigenvalue problems are solved in primitive variables by the matrix-forming approach on collocated grids.  相似文献   

15.
Any classical solution of the two-dimensional incompressible Euler equation is global in time. However, it remains an outstanding open problem whether classical solutions of the surface quasi-geostrophic (SQG) equation preserve their regularity for all time. This paper studies solutions of a family of active scalar equations in which each component u j of the velocity field u is determined by the scalar θ through \({u_j =\mathcal{R}\Lambda^{-1}P(\Lambda) \theta}\) , where \({\mathcal{R}}\) is a Riesz transform and Λ = (?Δ)1/2. The two-dimensional Euler vorticity equation corresponds to the special case P(Λ) = I while the SQG equation corresponds to the case P(Λ) = Λ. We develop tools to bound \({\|\nabla u||_{L^\infty}}\) for a general class of operators P and establish the global regularity for the Loglog-Euler equation for which P(Λ) = (log(I + log(I ? Δ))) γ with 0 ≦ γ ≦ 1. In addition, a regularity criterion for the model corresponding to P(Λ) = Λ β with 0 ≦ β ≦ 1 is also obtained.  相似文献   

16.
A generalized method of deriving the model equations is considered for wave flow regimes in falling liquid films. The viscous liquid equations are used on the basis of integral boundary layer relations with weight functions. A family of systems of evolution differential equations is proposed. The integer parameter n of these systems specifies the number of a weight function. The case n = 0 corresponds to the classical IBL (Integral Boundary Layer) model. The case n ≥ 1 corresponds to its modifications called the WIBL (Weighted Integral Boundary Layer) models. The numerical results obtained in the linear and nonlinear approximations for n = 0, 1, 2 are discussed. The numerical solutions to the original hydrodynamic differential equations are compared with experimental data. This comparison leads us to the following conclusions: as a rule, the most accurate solutions are obtained for n = 0 in the case of film flows on vertical and inclined solid surfaces and the accuracy of solutions decreases with increasing n. Hence, the classical IBL model has an advantage over the WIBL models.  相似文献   

17.
The characteristics of the coherent structures in a strongly decelerated large-velocity-defect boundary layer are analysed by direct numerical simulation. The simulated boundary layer starts as a zero-pressure-gradient boundary layer, decelerates under a strong adverse pressure gradient, and separates near the end of the domain, in the form of a very thin separation bubble. The Reynolds number at separation is R e ?? =3912 and the shape factor H=3.43. The three-dimensional spatial correlations of (u, u) and (u, v) are investigated and compared to those of a zero-pressure-gradient boundary layer and another strongly decelerated boundary layer. These velocity pairs lose coherence in the streamwise and spanwise directions as the velocity defect increases. In the outer region, the shape of the correlations suggest that large-scale u structures are less streamwise elongated and more inclined with respect to the wall in large-defect boundary layers. The three-dimensional properties of sweeps and ejections are characterized for the first time in both the zero-pressure-gradient and adverse-pressure-gradient boundary layers, following the method of Lozano-Durán et al. (J. Fluid Mech. 694, 100–130, [2012]). Although longer sweeps and ejections are found in the zero-pressure-gradient boundary layer, with ejections reaching streamwise lengths of 5 boundary layer thicknesses, the sweeps and ejections tend to be bigger in the adverse-pressure-gradient boundary layer. Moreover, small near-wall sweeps and ejections are much less numerous in the large-defect boundary layer. Large sweeps and ejections that reach the wall region (wall-attached) are also less numerous, less streamwise elongated and they occupy less space than in the zero-pressure-gradient boundary layer.  相似文献   

18.
The linear stability analysis of vertical throughflow of power law fluid for double-diffusive convection with Soret effect in a porous channel is investigated in this study. The upper and lower boundaries are assumed to be permeable, isothermal and isosolutal. The linear stability of vertical through flow is influenced by the interactions among the non-Newtonian Rayleigh number (Ra), Buoyancy ratio (N), Lewis number (Le), Péclet number (Pe), Soret parameter (Sr) and power law index (n). The results indicate that the Soret parameter has a significant influence on convective instability of power law fluid. It has also been noticed that buoyancy ratio has a dual effect on the instability of fluid flow. Further, it is noticed that the basic temperature and concentration profiles have singularities at \(Pe = 0\) and \(Le = 1\), the convective instability is looked into for the limiting case of \(Pe\rightarrow 0\) and \(Le \rightarrow 1\). For the case of pure thermal convection with no vertical throughflow, the present numerical results coincide with the solution of standard Horton–Rogers–Lapwood problem. The present results for critical Rayleigh number obtained using bvp4c and two-term Galerkin approximation are compared with those available in the literature and are tabulated.  相似文献   

19.
We consider the system Δu ? W u (u) = 0, where \({u : \mathbb{R}^n \to \mathbb{R}^n}\) , for a class of potentials \({W : \mathbb{R}^n \to \mathbb{R}}\) that possess several global minima and are invariant under a general finite reflection group G. We establish existence of nontrivial G-equivariant entire solutions connecting the global minima of W along certain directions at infinity.  相似文献   

20.
The effect of micro-bubbles on the turbulent boundary layer in the channel flow with Reynolds numbers (Re) ranging from \(0.87\times 10 ^{5}\) to \(1.23\times 10^{5}\) is experimentally studied by using particle image velocimetry (PIV) measurements. The micro-bubbles are produced by water electrolysis. The velocity profiles, Reynolds stress and instantaneous structures of the boundary layer, with and without micro-bubbles, are measured and analyzed. The presence of micro-bubbles changes the streamwise mean velocity of the fluid and increases the wall shear stress. The results show that micro-bubbles have two effects, buoyancy and extrusion, which dominate the flow behavior of the mixed fluid in the turbulent boundary layer. The buoyancy effect leads to upward motion that drives the fluid motion in the same direction and, therefore, enhances the turbulence intense of the boundary layer. While for the extrusion effect, the presence of accumulated micro-bubbles pushes the flow structures in the turbulent boundary layer away from the near-wall region. The interaction between these two effects causes the vorticity structures and turbulence activity to be in the region far away from the wall. The buoyancy effect is dominant when the Re is relatively small, while the extrusion effect plays a more important role when Re rises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号