首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 μg kg−1 and 70.0 μg kg−1 were 93.0–109.5% and 95.4–107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 μg kg−1 of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 μg kg−1. The linearity of the method ranged from 10 to 100 μg kg−1 for the three fungicides, with correlation coefficients (r 2) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC–ECD can satisfy the requirements for the determination of fungicides in apple samples. Figure Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD) allows satisfactory determination of fungicides in apple samples  相似文献   

2.
An approach for rapid quantitation of 5-hydroxymethylfurfural (HMF) in honey using planar chromatography is suggested for the first time. In high-performance thin-layer chromatography (HPTLC) the migration time is approximately 5 min. Detection is performed by absorbance measurement at 290 nm. Polynomial calibration in the matrix over a range of 1:80 showed correlation coefficients, r, of ≥ 0.9997 for peak areas and ≥ 0.9996 for peak heights. Repeatability in the matrix confirmed the suitability of HPTLC–UV for quantitation of HMF in honey. The relative standard deviation (RSD, %, n = 6) of HMF at 10 ng/band was 2.9% (peak height) and 5.2% (peak area); it was 0.6% and 1.0%, respectively, at 100 ng/band. Other possible detection modes, for example fluorescence measurement after post-chromatographic derivatization and mass spectrometric detection, were also evaluated and can coupling can be used as an additional tool when it is necessary to confirm the results of prior quantitation by HPTLC–UV. The confirmation is provided by monitoring the HMF sodium adduct [M + Na]+ at m/z 149 followed by quantitation in TIC or SIM mode. Detection limits for HPTLC–UV, HPTLC–MS (TIC), and HPTLC–MS (SIM) were 0.8 ng/band, 4 ng/band, and 0.9 ng/band, respectively. If 12 μL honey solution was applied to an HPTLC plate, the respective detection limits for HMF in honey corresponded to 0.6 mg kg−1. Thus, the developed method was highly suitable for quantitation of HMF in honey at the strictest regulated level of 15 mg kg−1. Comparison of HPTLC–UV detection with HPTLC–MS showed findings were comparable, with a mean deviation of 5.1 mg kg−1 for quantitation in SIM mode and 6.1 mg kg−1 for quantitation in TIC mode. The mean deviation of the HPTLC method compared with the HPLC method was 0.9 mg kg-1 HMF in honey. Re-evaluation of the same HPTLC plate after one month showed a deviation of 0.5 mg kg−1 HMF in honey. It was demonstrated that the proposed HPTLC method is an effective method for HMF quantitation in honey.   相似文献   

3.
Eight PM10 aerosol samples were collected in the vicinity of the “Mario Zucchelli” Italian Antarctic Station (formerly Terra Nova Bay Station) during the 2000–2001 austral summer using a high-volume sampler and precleaned cellulose filters. The aerosol mass was determined by differential weighing of filters carried out in a clean chemistry laboratory under controlled temperature and humidity. A two-step sequential extraction procedure was used to separate the water-soluble and the insoluble (dilute-HCl-extractable) fractions. Cd, Pb and Cu were determined in the two fractions using an ultrasensitive square wave anodic stripping voltammetric (SWASV) procedure set up for and applied to aerosol samples for the first time. Total extractable metals showed maxima at midsummer for Cd and Pb and a less clear trend for Cu. In particular, particulate metal concentrations ranged as follows: Cd 0.84–9.2 μg g−1 (average 4.7 μg g−1), Pb 13.2–81 μg g−1 (average 33 μg g−1), Cu 126–628 μg g−1 (average 378 μg g−1). In terms of atmospheric concentration, the values were: Cd 0.55–6.3 pg m−3 (average 3.4 pg m−3), Pb 8.7–48 pg m−3 (average 24 pg m−3), Cu 75–365 pg m−3 (average 266 pg m−3). At the beginning of the season the three metals appear widely distributed in the insoluble (HCl-extractable) fraction (higher proportions for Cd and Pb, 90–100%, and lower for Cu, 70–90%) with maxima in the second half of December. The soluble fraction then increases, and at the end of the season Cd and Pb are approximately equidistributed between the two fractions, while for Cu the soluble fraction reaches its maximum level of 36%. Practically negligible contributions are estimated for crustal and sea-spray sources. Low but significant volcanic contributions are estimated for Cd and Pb (∼10% and ∼5%, respectively), while there is an evident although not quantified marine biogenic source, at least for Cd. The estimated natural contributions (possibly including the marine biogenic source) cannot account for the high fractions of the metal contents, particularly for Pb and Cu, and this suggests that pollution from long-range transport is the dominant source. Figure Aerosol sampling in Antarctica  相似文献   

4.
A multi-component method focussing on thorough sample preparation has been developed for simultaneous analysis of swine manure for three classes of antibiotic—tetracyclines, sulfonamides, and tylosin. Liquid manure was initially freeze-dried and homogenised by pulverization before extraction by pressurised liquid extraction. The extraction was performed at 75°C and 2,500 psig in three steps using two cycles with 0.2 mol L−1 citric acid buffer (pH 4.7) and one cycle with a mixture of 80% methanol with 0.2 mol L−1 citric acid (pH 3). After liquid–liquid extraction with heptane to remove lipids, the pH of the manure was adjusted to 3 with formic acid and the sample was vacuum-filtered through 0.6 μm glass-fibre filters. Finally the samples were pre-concentrated by tandem SPE (SAX-HLB). Recoveries were determined for manure samples spiked at three concentrations (50–5,000 μg kg−1 dry matter); quantification was achieved by matrix-matched calibration. Recoveries were >70% except for oxytetracycline (42–54%), sulfadiazine (59–73%), and tylosin (9–35%) and did not vary with concentration or from day-to-day. Limits of quantification (LOQ) for all compounds, determined as a signal-to-noise ratio of 10, were in the range 10–100 μg kg−1 dry matter. The suitability of the method was assessed by analysis of swine manure samples from six different pig-production sites, e.g. finishing pigs, sows, or mixed production. Residues of antibiotics were detected in all samples. The largest amounts were found for tetracyclines (up to 30 mg kg−1 dry matter for the sum of CTC and ECTC). Sulfonamides were detected at concentrations up to 2 mg kg−1 dry matter (SDZ); tylosin was not detected in any samples.   相似文献   

5.
In the framework of developing analyses for exogenous contaminants in food matrices such as honey, we have compared data obtained by high-performance liquid chromatography coupled with mass spectrometry (LC–MS) to those provided by high-performance liquid chromatography and tandem mass spectrometry (LC–MS–MS). Initial results obtained with LC–MS showed that the technique lacked selectivity, which is why the method was validated by LC–MS–MS. This method involves a solid-phase extraction (SPE) of nitrofuran metabolites and nitrofuran parent drugs, a derivatization by 2-nitrobenzaldehyde for 17 h, and finally a clean-up by SPE. The data obtained show that the limits of detection varied between 0.2 and 0.6 μg kg−1 for the metabolites and between 1 and 2 μg kg−1 for nitrofuran parent drugs. The method was applied to different flower honeys. The results showed that nitrofurans (used as antibiotics) are consistently present in this matrix, the predominant compound being furazolidone. Figure Working bees  相似文献   

6.
The worldwide contamination of winery by-products by mycotoxins may present a serious hazard to human and animal health. Mycotoxins are secondary metabolites of fungi with possible adverse effects on humans, animals, and crops that result in illnesses and economic losses. Mycotoxins are under continuous survey in Europe, but the regulatory aspects still need to be set up for winery by-products, which may be used in animal feed. The aim of this study was to implement a simple but reliable analytical methodology for ochratoxin A (OTA) quantification in grape pomaces in order to perform a survey of samples from the Douro Demarcated Region, Portugal. The method involved a unique preparation step, solvent extraction, followed by high-performance liquid chromatography (HPLC) with fluorescence (FL) detection. A comparative study was performed with two extraction solvents (ethyl acetate and methanol) as well as using extraction on an immunoaffinity column. The linearity range for OTA analysis was 0.05–23.5 μg L−1 with a detection limit of 0.05 μg L−1 and a precision (expressed by the coefficient of variation under repeatability conditions) of 0.4–14.7%. The percentage of recovery was on average 23.5 ± 3.6% (extraction with ethyl acetate) or 70.1 ± 2.5% (extraction with 70% methanol). Accounting for the recovery factor and the chromatographic detection limit, as well as the preconcentration factor, the limit of detection in grape pomaces is 0.04 μg kg−1 (ethyl acetate extraction) and 0.33 μg kg−1 (methanol extraction). Samples from 12 out of 13 sites in the Douro Demarcated Region showed OTA presence with concentrations not exceeding 0.4 μg kg−1. Both developed methods for evaluation of OTA in grape pomace are simple but efficient. Figure Extraction of ochratoxin A (OTA) from grape pomaces allows simple but efficient quantification of OTA in winery by-products by HPLC-FL  相似文献   

7.
The simultaneous determination of three isomers of phenylenediamines (o, m, and p-phenylenediamine) and two isomers of dihydroxybenzenes (catechol and resorcinol) in hair dyes was performed by capillary zone electrophoresis coupled with amperometric detection (CZE–AD). The effects of working electrode potential, pH and concentration of running buffer, separation voltage, and injection time on CZE–AD were investigated. Under the optimum conditions the five analytes could be perfectly separated in 0.30 mol L−1 borate–0.40 mol L−1 phosphate buffer (pH 5.8) within 15 min. A 300 μm diameter platinum electrode had good responses at +0.85 V (versus SCE) for the five analytes. Their linear ranges were from 1.0 × 10−6 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−7 mol L−1 (S/N = 3). This working electrode was successfully used to analyze eight kinds of hair dye sample with recoveries in the range 91.0–108.0% and RSDs less than 5.0%. These results demonstrated that capillary zone electrophoresis coupled with electrochemical detection using a platinum working electrode as detector was convenient, highly sensitive, highly repeatable and could be used in the rapid determination of practical samples. Figure Electropherograms obtained from 10 mg mL−1 hair dye sample solutions at a platinum working electrode under optimum CZE–AD conditions: (a) natural black (I), (b) golden: (1) p-phenylenediamine, (2) m-phenylenediamine, (3) o-phenylenediamine, (4) resorcinol, and (5) catechol  相似文献   

8.
Two new HPTLC methods for quantification of isopropyl-9H-thioxanthen-9-one (ITX) in milk, yoghurt and fat samples have been developed. Extraction of ITX from milk and yoghurt was performed with a mixture of cyclohexane and ethyl acetate by employment of accelerated solvent extraction (ASE). For soy bean oil and margarine, a simple partitioning of ITX into acetonitrile was used. ITX and 2,4-diethyl-9H-thioxanthen-9-one (DTX) used as internal standard have been separated on silica gel 60 HPTLC plates with a mixture of toluene and n-hexane (4:1, v/v) and on RP18 HPTLC plates with a mixture of acetonitrile and water (9:1, v/v). Development was performed anti-parallel from both plate sides leading to a throughput of 36 separations in 7 min. Fluorescence measurement at 254/>400 nm was used for quantification. Limits of detection (S/N of 3) have been established to be 64 pg for ITX and DTX on both types of HPTLC plates. In fatty matrix (spiked butter) LOD of ITX was determined to be 1 μg kg−1. In the working range monitored (20–200 μg kg−1) polynomial regression of ITX showed a relative standard deviation (sdv) of ±1.51 % (r=0.99981). Starting with the limit of quantification the response was linear (sdv=±2.18 %, r=0.99893). Regarding repeatability (n=9) a coefficient of variation (CV) of 1.1 % was obtained for ITX at 32 ng on silica gel plates and of 2.9 % on reversed-phase plates. Repeatabilities (n=4) of ITX determination at 20, 50 and 100 μg kg−1 in milk, yoghurt, soybean oil and margarine showed CVs between ±1.0 and 6.4 %. The results prove that modern planar chromatography is a rapid and cost-efficient alternative method to quantify ITX in milk-based or fatty matrices. Only positive results are confirmed by online ESI/MS in the SIM mode (LOQ 128 pg) and by DART/MS involving a minimal employment of the MS device, which is a further advantage of HPTLC. Overall mean recovery rates of ITX at 20 or 50 and 100 μg kg−1 (n=8) were 41 % for milk, 70 % for yoghurt, 6 % for margarine and 12 % for soy bean oil. However, with the internal standard correction recoveries were about 130 % for milk and yoghurt and 70 and 97 % for margarine and soy bean oil, respectively.   相似文献   

9.
Competitive adsorption on adsorptive solid-phase microextraction (SPME) fibres implies careful determination of operating conditions for reliable quantitative analysis of VOCs in indoor air. With this objective, two analytical approaches, involving non-equilibrium and equilibrium extraction, were compared. The average detection limit obtained for GC-MS analysis of nine VOCs by the equilibrium method is 0.2 μg m−3, compared with 1.9 μg m−3 with the non-equilibrium method. The effect of the relative humidity of the air on the calibration plots was studied, and shown to affect acetone adsorption only. Hence, the concentrations that can be accurately determined are up to 9 μmol m−3. The methods were then applied to indoor air containing different concentrations of VOCs. The non-equilibrium method, involving short extraction time, can be used for detection of pollution peaks whereas equilibrium extraction is preferable for measurement of sub-μg m−3 ground concentration levels.   相似文献   

10.
Abstract  Two simple, sensitive, and selective spectrophotometric methods were developed for determining amodiaquine (AQ) and chloroquine (CQ) based on their oxidation with potassium iodate and potassium bromate, respectively. The initial rates of oxidation of AQ and CQ were monitored at 342 and 343 nm, the wavelengths of maximum absorptions of the two drugs. The various experimental parameters affecting oxidation reactions were thoroughly studied and optimized. Beer’s law was obeyed for 0.2–4.0 and 0.5–5.0 μg cm−3, with correlation coefficients of 0.9999 and 0.9998 (n = 6) and a detection limit (based on the 3S b -criterion) of 0.04 and 0.06 μg cm−3 for AQ and CQ. The proposed methods were conveniently applied to determining AQ and CQ in pure and dosage forms. Graphical abstract     相似文献   

11.
A rapid and simple miniaturized liquid–liquid extraction method has been developed for the determination of topramezone in soil, corn, wheat, and water samples using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-electrospray ionization (ESI)/MS/MS). The established method for the extraction and purification procedure was based on liquid–liquid partitioning into an aqueous solution at a low pH (pH ≈ 2.5), followed by back-partitioning into water at pH > 9. Two precursor, product ion transitions for topramezone were measured and evaluated to provide the maximum degree of confidence in the results. Under negative ESI conditions, quantitation was achieved by monitoring the fragment at m/z = 334 and the qualitative fragment at m/z = 318, whereas also collecting the corresponding parent ion at m/z = 362. Chromatographic separation was achieved using gradient elution with a mobile phase consisting of methanol and a 0.01% aqueous ammonium hydroxide solution. Recovery studies for soil, corn, wheat, and water were conducted at four different topramezone concentrations (5 or 10, 50, 100, and 1,000 μg kg−1); the overall average recoveries ranged from 79.9% to 98.4% with intra-day relative standard deviations (RSD) of 3.1~8.7% and inter-day RSD of 4.3~7.5%. Quantitative results were determined from calibration curves of topramezone standards containing 1–500 μg L−1 with an R 2 ≥ 0.9994. Method sensitivities expressed as limits of quantitation were typically 6, 8, 9, and 1 μg kg−1 in soil, corn, wheat, and water, respectively. The results of the method validation confirmed that this proposed method was convenient and reliable for the determination of topramezone residues in soil, corn, wheat, and water.  相似文献   

12.
An analytical method was developed for the determination of three major (Li, Ni and Co) and fourteen minor or trace elements (Al, Ba, Ca, Cu, Cr, Fe, K, Mg, Mn, Na, Si, Sr, Ti and V) in LiNi1−x Co x O2 (x = 0.2–0.8) ceramic powders by inductively coupled plasma optical emission spectrometry. Sample dissolution was achieved by 25% nitric acid digestion in a microwave oven. For each element, an analytical line free from spectral interferences was selected. A detailed study of matrix effects over a wide interval of total excitation energy (TEE) lines (1.62–16.50 eV) was performed at near-robust plasma conditions. A remarkable enhancement in atomic lines with TEE <4 eV was noticed, whereas a significant reduction in atomic and ionic lines with TEE >4 eV was observed. The extrapolation to infinite dilution method was successfully used to overcome these nonspectroscopic interferences. Detection limits (3σ) varied from 0.21 mg kg−1 for Sr to 49.7 mg kg−1 for Na. The precision of determination (obtained as the relative standard deviation) was lower than 1% for the major elements Li, Ni and Co and between 0.69 and 10% for minor and trace elements. The accuracy of the method ranged from 91 to 101% for major elements, and from 90 to 110%, or close to this range, for most of the impurities in both of the samples studied.   相似文献   

13.
The spatial distribution and concentration of impurities in metallurgical-grade silicon (MG-Si) samples (97–99% w/w Si) were investigated by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The spatial resolution (120 μm) and low limits of detection (mg kg−1) for quality assurance of such materials were studied in detail. The volume-dependent precision and accuracy of non-matrix-matched calibration for quantification of minor elements, using NIST SRM 610 (silicate standard), indicates that LA-ICP-MS is well suited to rapid process control of such materials. Quantitative results from LA-ICP-MS were compared with previously reported literature data obtained by use of ICP-OES and rf-GD-OES. In particular, the distribution of element impurities and their relationship to their different segregation coefficients in silicon is demonstrated. Dedicated to Professor Klaus G. Heumann  相似文献   

14.
To evaluate the pharmacokinetics of a novel analogue of ginkgolide B, 10-O-dimethylaminoethylginkgolide B (XQ-1) in rat plasma in pre-clinical studies, a sensitive and specific liquid chromatographic method with electrospray ionization mass spectrometry detection (LC–ESI–MS) was developed and validated. After a simple extraction with ethyl acetate, XQ-1 was analyzed on a Shim-pack C18 column with a mobile phase of a mixture of 1 μmol L−1 ammonium acetate containing 0.02% formic acid and methanol (55:45, v/v) at a flowrate of 0.3 mL min−1. Detection was performed in selected ion monitoring (SIM) mode using target ions at [M + H]+ m/z 496.05 for XQ-1 and m/z 432.10 for the internal standard (lafutidine). Linearity was established for the concentration range from 2 to 1,000 ng mL−1 . The extraction recoveries ranged from 86.0 to 89.9% in plasma at concentrations of 5, 50, and 500 ng mL−1. The lower limit of quantification was 2 ng mL−1 with 100 μL plasma. The validated method was successfully applied to a pharmacokinetic study after intragastic administration of XQ-1 mesylate in rats at a dose of 20 mg kg−1.  相似文献   

15.
A microfluidic system incorporating chemiluminescence detection is reported as a new tool for measuring antioxidant capacity. The detection is based on a peroxyoxalate chemiluminescence (PO-CL) assay with 9,10-bis-(phenylethynyl)anthracene (BPEA) as the fluorescent probe and hydrogen peroxide as the oxidant. Antioxidant plugs injected into the hydrogen peroxide stream result in inhibition of the CL emission which can be quantified and correlated with antioxidant capacity. The PO-CL assay is performed in 800-μm-wide and 800-μm-deep microchannels on a poly(dimethylsiloxane) (PDMS) microchip. Controlled injection of the antioxidant plugs is performed through an injection valve. Of the plant-food based antioxidants tested, β-carotene was found to be the most efficient hydrogen peroxide scavenger (SA HP of 3.27 × 10−3 μmol−1 L), followed by α-tocopherol (SA HP of 2.36 × 10−3 μmol−1 L) and quercetin (SA HP of 0.31 × 10−3 μmol−1 L). Although the method is inherently simple and rapid, excellent analytical performance is afforded in terms of sensitivity, dynamic range, and precision, with RSD values typically below 1.5%. We expect our microfluidic devices to be used for in-the-field antioxidant capacity screening of plant-sourced food and pharmaceutical supplements. Figure Assembled PDMS microchip sandwiched between two glass plates with the top plate containing capillary reservoirs  相似文献   

16.
A fast and sensitive approach that can be used to detect norfloxacin in human urine using capillary electrophoresis with end-column electrochemiluminescence (ECL) detection of is described. The separation column was a 75-μm i.d. capillary. The running buffer was 15 mmol L−1 sodium phosphate (pH 8.2). The solution in the detection cell was 50 mmol L−1 sodium phosphate (pH 8.0) and 5 mmol L−1 The ECL intensity varied linearly with norfloxacin concentration from 0.05 to 10 μmol L−1. The detection limit (S/N=3) was 0.0048 μmol L−1, and the relative standard deviations of the ECL intensity and the migration time for eleven consecutive injections of 1.0 μmol L−1 norfloxacin (n=11) were 2.6% and 0.8%, respectively. The method was successfully applied to the determination of norfloxacin spiked in human urine without sample pretreatment. The recoveries were 92.7–97.9%.   相似文献   

17.
A rapid, specific, and sensitive method has been developed using molecularly imprinted polymers (MIPs) as solid-phase extraction sorbents for extraction of trace tetracycline antibiotics (TCs) in foodstuffs. MIPs were prepared by precipitation polymerization using tetracycline as the template. Under the optimal condition, the imprinting factors for MIPs were 4.1 (oxytetracycline), 7.0 (tetracycline), 7.4 (chlortetracycline), 7.7 (doxycycline), respectively. Furthermore, the performance of MIPs as solid-phase extraction sorbents was evaluated and high extraction efficiency of molecularly imprinted solid-phase extraction (MISPE) procedure was demonstrated. Compared with commercial sorbents, MISPE gave a better cleanup efficiency than C18 cartridge and a higher recovery than Oasis HLB cartridge. Finally, the method of liquid chromatography–tandem mass spectrometry coupled with molecular-imprinted solid-phase extraction was validated in real samples including lobster, duck, honey, and egg. The spiked recoveries of TCs ranged from 94.51% to 103.0%. The limits of detection were in the range of 0.1–0.3 μg kg−1. Chromatograms obtained by direct injection of the spiked egg extracts (5 × 10-3 mmol L−1) and purification with MISPE  相似文献   

18.
Cholesterol oxidase (ChOx), cholesterol esterase (ChEt), and horseradish peroxidase (HRP) have been co-immobilized covalently on a self-assembled monolayer (SAM) of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTS) deposited on an indium–tin–oxide (ITO) glass surface. These enzyme-modified (ChOx-ChEt-HRP/AEAPTS/ITO) biosensing electrodes have been used to estimate cholesteryl oleate from 10 to 500 mg dL−1. The sensitivity, K m value, and shelf-life of these ChEt-ChOx-HRP/AEAPTS/ITO biosensing electrodes have been found to be 124 nA mg−1 dL, 95.098 mg dL−1 (1.46 mmol L−1), and ten weeks, respectively. The ChEt-ChOx-HRP/AEAPTS/ITO bio-electrodes have been used to estimate total cholesterol in serum samples. Figure Covalent immobilization of enzymes onto AEAPTS/ITO surface using EDC/NHS chemistry Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The mouse bioassay is the methodology that is most widely used to detect okadaic acid (OA) in shellfish samples. This is one of the best-known toxins, and it belongs to the family of marine biotoxins referred to as the diarrhetic shellfish poisons (DSP). Due to animal welfare concerns, alternative methods of toxin detection are being sought. A rapid and specific biosensor immunoassay method was developed and validated for the detection of OA. An optical sensor instrument based on the surface plasmon resonance (SPR) phenomenon was utilised. A polyclonal antibody to OA was raised against OA–bovine thyroglobulin conjugate and OA–N-hydroxy succinimide ester was immobilised onto an amine sensor chip surface. The assay parameters selected for the analysis of the samples were: antibody dilution, 1/750; ratio of antibody to standard, 1:1; volume of sample injected, 25 μl min−1; flow rate, 25 μl min−1. An assay action limit of 126 ng g−1 was established by analysing of 20 shellfish samples spiked with OA at the critical concentration of 160 ng g−1, which is the action limit established by the European Union (EU). At this concentration of OA, the assay delivered coefficient of variations (CVs) of <10%. The chip surface developed was shown to be highly stable, allowing more than 50 analyses per channel. When the concentrations of OA determined with the biosensor method were compared with the values obtained by LC–MS in contaminated shellfish samples, the correlation between the two analytical methods was found to be highly satisfactory (r 2 = 0.991). Figure Biacore  相似文献   

20.
A simple, rapid, sensitive and selective liquid chromatography/electrospray tandem mass spectrometry method was developed and validated for the simultaneous quantification of cilostazol and its primary metabolite 3,4-dehydrocilostazol in human plasma using mosapride as an internal standard. The method involves a simple one-step liquid-liquid extraction with a diethyl ether and dichloromethane mixture (7:3). The analytes were chromatographed using an isocratic mobile phase on a reversed-phase C18 column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 370/288 for cilostazol, m/z 368/286 for 3,4-dehydrocilostazol and m/z 422/198 for the internal standard. The assay exhibited a linear dynamic range of 5–2,000 ng/mL for cilostazol and 5–400 ng/mL for 3,4-dehydrocilostazol in human plasma. The lower limit of quantitation was 5 ng/mL for both cilostazol and its metabolite. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetics, bioavailability or bioequivalence studies.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号