首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the natural frequencies and mode shapes of a rotating disk submerged and totally confined inside a rigid casing, have been obtained. These have been calculated analytically, numerically and experimentally for different axial gaps disk-casing. A simplified analytical model to analyse the dynamic response of a rotating disk submerged and confined, that has been used and validated in previous researches, is used in this case, generalised for arbitrary axial gaps disk-casing. To use this model, it is necessary to know the averaged rotating speed of the flow with respect to the disk. This parameter is obtained after an analytical discussion of the motion of the flow inside the casing where the disk rotates, and by means of CFD simulations for different axial positions of the disk. The natural frequencies of the rotating disk for the different axial confinements can be calculated following this method. A Finite Element Model has been built up to obtain the natural frequencies by means of computational simulation. The relative velocity of the flow with respect to the disk is also introduced in the simulation model in order to estimate the natural frequencies of the rotating disk. Experimental tests have been performed with a rotating disk test rig. A thin stainless steel disk (thickness of 8 mm, (h/r<5%) and mass of 7.6 kg) rotates inside a rigid casing. The position of the disk can be adjusted at several axial gaps disk-casing. A piezoelectric patch (PZT) attached on the rotating disk is used to excite the structure. Several miniature and submergible accelerometers have measured the response from the rotating frame. Excitation and measured signals are transmitted from the rotating to the stationary frame through a slip ring system. Experimental results are contrasted with the results obtained by the analytical and numerical model. Thereby, the influence of the axial gap disk-casing on the natural frequencies of a rotating disk totally confined and surrounded by a heavy fluid is determined.  相似文献   

2.
The rotationally symmetric flow over a rotating disk in an incompressible viscous fluid is analyzed by a new method when the fluid at infinity is in a state of rigid rotation (in the same or in the opposite sense) about the same axis as that of the disk. Asymptotic expansions for the velocity field over the entire flow field are obtained for the general class of one-parameter rotationally symmetric flows. This method is further extended to the case when a uniform suction or injection is assumed at the rotating disk. Fluid motion induced by oscillatory suction of small amplitude at the rotating disk is also discussed.An initial-value analysis reveals that resonance is possible only when the angular velocity of the rotating fluid is greater than that of the rotating disk.  相似文献   

3.
范椿  陈耀松 《力学学报》1995,27(Z1):14-19
导出了描述Bingham流体在旋转圆盘上流动的基本方程,用差分方法数值解薄膜厚度分布方程,得到二种类型的厚度分布。数值解分别和计算机磁盘的厚度分布,Jenekhe等的实验结果定性一致。  相似文献   

4.
Fluid flow in a rotating cylindrical container of radius Rw and height H with a co-axially rotating disk of radius Rd at the fluid surface is numerically investigated. The container and the disk rotate with angular velocities Ωw and Ωd, respectively. We solve the axisymmetric Navier-Stokes equations using a finite-volume method. The effects of the relative directions and magnitudes of the disk and container rotations are studied. The calculations are carried out with various ratios of Ωw and Ωd for H/Rw = 2 and Rd/Rw = 0.7. Streamlines and velocity vectors in the meridional plane and azimuthal velocities are obtained. The flow fields in the meridional plane are discussed with relation to azimuthal velocities in the interior of the container. The numerical results are also compared with experimental data.  相似文献   

5.
A numerical study of tangential layers in steady‐state magnetohydrodynamic rotating flows is presented using CFD to solve the inductionless governing equations. The analysis considers two basic flow configurations. In the first, a fluid is enclosed in a cylinder with electrically perfect conducting walls and the flow is driven by a small rotating, conducting disk. In the second, a flow is considered in a spherical shell with an inner rotating sphere. The fluid in both cases is subjected to an external axial uniform magnetic field. The results show that these flows exhibit two different types of flow cores separated from each other by a tangential layer parallel to the axis of rotation. The inner core follows a solid‐body rotation while the outer is quasistagnant. A counter‐rotating jet is developed in the tangential layer between the cores. The characteristics of the tangential layer and the properties of the meridional motion are determined for a wide range of Hartmann numbers. Distributions of angular velocity of circumferential flow and electric potential are obtained and the results are compared with those of analytic methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper studies the effects of a circular magnetic field on the flow of a conducting fluid about a porous rotating disk. Using modern quasi-Newton and globally convergent homotopy methods, numerical solutions are obtained for a wide range of magnetic field strengths, suction and injection velocities and Alfven and disk speeds. Results are presented graphically in terms of three non-dimensional parameters. There is excellent agreement with previous work and asymptotic formulae.  相似文献   

7.
This paper is concerned with investigations of the gas flow around and in the cell-porous rotating disk. A simple 1D model of gas flow is presented. Usually the cell-porous materials are applied in heat exchangers and stationary filters. On the other hand, peculiarities of the flow revealed under theoretical analysis and some experimental observations demonstrate that rotating porous disks may also be effectively exploited in the shear-force machines for the gas transport purposes.  相似文献   

8.
提了了一种简单的无粘旋转流体准三维模型,并给出了旋转流体对转子作用力的详细表达式,然后用该模型分析了部分充液刚性悬臂转子系统的稳定性,并与实验结果进行了比较,两者在定性上符合较好,准三维无粘流体模型与其它的无粘膜型一样也仅能用来分析无外阻尼或外阻尼较小的部分充液转子系统的稳定性问题。  相似文献   

9.
M. Guria  B. K. Das  R. N. Jana 《Meccanica》2007,42(5):487-493
An analytical solution of the unsteady Navier–Stokes equations is obtained for the flow due to non-coaxial rotations of an oscillating porous disk and a fluid at infinity, rotating about an axis parallel to the axes of rotation of the disk through a fixed point. The velocity distributions and the shear stresses at the disk are obtained for three different cases when the frequency parameter is greater than, equal to or less than the rotation parameter. The flow has a boundary layer structure even in the case of blowing at the disk.  相似文献   

10.
Magnetohydrodynamic flow of an electrically conducting power-law fluid in the vicinity of a constantly rotating infinite disk in the presence of a uniform magnetic field is considered. The steady, laminar and axi-symmetric flow is driven solely by the rotating disk, and the incompressible fluid obeys the inelastic Ostwald de Waele power-law model. The three-dimensional boundary layer equations transform exactly into a set of ordinary differential equations in a generalized similarity variable. These ODEs are solved numerically for values of the magnetic parameter m up to 4.0. The effect of the magnetic field is to reduce, and eventually suppress, the radially directed outflow. An accompanying reduction of the axial flow towards the disk is observed, together with a thinning of the boundary layer adjacent to the disk, thereby increasing the torque required to maintain rotation of the disk at the prescribed angular velocity. The influence of the magnetic field is more pronounced for shear-thinning than for shear-thickening fluids.  相似文献   

11.
Experimental data on vortex formation near the sinkhole in a fluid flowing out of a reservoir are analyzed. An experimental facility which makes it possible to study the influence of various factors on vortex formation near a sinkhole has been designed and built. In the experiments performed, a vortex was observed only if before the sinkhole was opened a rotating disk was immersed in the fluid. In the steady-state flow regime, a brief rotation of the disk resulted in the formation and subsequent damping of a vortex. For a preswirled fluid, the formation of a vortex crater depends on the sinkhole location.  相似文献   

12.
The paper represents results of an exact solution of a laminar heat transfer problem for a rotating disk in a fluid co-rotating with the disk as a solid body. The angular speed of the fluid is less than the angular speed of the disk. Disks surface temperature varies radially accordingly to a power law. Results for the laminar regime are compared with computations for turbulent heat transfer obtained using an integral method developed earlier. On the basis of the exact solution for laminar flow and basic ideas of the integral methods solution for turbulent flow, an integral method for laminar regime is designed and an approximate analytical solution of the considered problem is derived. Inaccuracies of the laminar approximate solution over the main range of variation of the influencing parameters and Prandtl numbers from 0.71 to 1 do not exceed 2.5%. It is shown that the dependence of the Nusselt number on the ratio of the angular speeds of disk and fluid varying from 0 to 0.3 is weak and has a point of maximum within this region for laminar flow. The obtained results are important in predictions of fluid flow and heat transfer in different types of rotating machinery.  相似文献   

13.
The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study.The disk impinges the oncoming flow with a time-dependent axial velocity.The three-dimensional axisymmetric boundary-layer flow is described by the Navier-Stokes equations.The governing equations are solved numerically,and two distinct similarity solution branches are obtained.Both solution branches exhibit different flow patterns.The upper branch solution exists for all values of the impinging parameter β and the rotating parameter.However,the lower branch solution breaks down at some moderate values of β.The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β.The results of the velocity profile,the skin friction,and the stream lines are demonstrated through graphs and tables for both solution branches.The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.  相似文献   

14.
A hybrid method for computing the flow of viscoelastic and second-order fluids is presented. It combines the features of the finite difference technique and the shooting method. The method is accurate because it uses central differences. Its convergence is at least superlinear. The method is applied to obtain the solutions to three problems of flow of Walters' B' fluid: (a) flow near a stagnation point, (b) flow over a stretching sheet and (c) flow near a rotating disk. Numerical results reveal some new characteristics of flows which are not easy to demonstrate using the perturbation technique.  相似文献   

15.
李龙飞  王省哲 《力学季刊》2007,28(4):631-637
旋转圆盘是广泛应用于旋转机械装置中的基本结构元件,圆盘在高速旋转状态下会表现出与低速或非旋转状态下迥异的力学性能.本文对高速旋转薄圆盘横向振动的行波动力学特性进行了分析,建立了考虑离心力引起的薄膜内力影响下的动力学控制方程以及相应的边界条件.采用伽辽金法数值模拟了旋转圆盘前、后行波振动频率和动力屈曲失稳临界转速随着圆盘几何参数如半径比、厚度的变化规律,以及材料参数对于振动频率和临界转速的影响等.本文的数值计算可以同时给出圆盘旋转的前、后行波频率,并且结果与实验结果吻合良好.  相似文献   

16.
An unsteady flow and heat transfer to an infinite porous disk rotating in a Reiner—Rivlin non-Newtonian fluid are considered. The effect of the non-Newtonian fluid characteristics and injection (suction) through the disk surface on velocity and temperature distributions and heat transfer is considered. Numerical solutions are obtained over the entire range of the governing parameters.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 85–95, January–February, 2005.  相似文献   

17.
The flow of a nonlinearly viscous (power-law) fluid over the surface of a rotating flat disk is investigated. A solution form which makes it possible to reduce the complete system of partial differential equations to a system of ordinary differential equations is found. This system is integrated using the Runge-Kutta method and reduction to a Cauchy problem on the basis of Newton's method. The velocity and pressure fields in a power-law fluid film flowing over the surface of a rotating flat disk are found numerically.  相似文献   

18.
Flow field through rotating porous disc was investigated with experimental fluid dynamics and compared with computational fluid dynamics. Open cell aluminum metal foam with 88% porosity was used. On rotating porous disc, integral measurements of static pressure difference in dependence of air volume flow rate were performed. Local measurements of velocity profiles close to disc circumference were performed with hot-wire anemometry. The airflow visualization method using smoke generator and digital camera was performed. Flow structures through porous disc were visualized at three different air volume flow rates. Numerical simulation of homogenous rotating porous disc was performed. Experimental and numerical results were compared. The results showed appropriate comparison of integral and local properties. The presented experimental approach can be used for the investigation and understanding of flow field phenomena on rotating porous materials. The proposed conclusions can be applied for variable applications on rotating porous materials.  相似文献   

19.
The decay of the fluid flow due to a rotating disk is analysed when the disk is stopped suddenly. The interaction of the induced Rayleigh flow and the initial von Karman flow results in the establishment of a boundary layer whose characteristics are studied in detail. Solutions representing the initial and final stages of the spin-down are supplemented by the numerical solution of the governing equations.  相似文献   

20.
The solutions of the continuity equation and the equations of motion of the flow in the vicinity of a rotating disk have been established for an Ostwald fluid under steady-state conditions and in modulated flow around a mean value. Under steady-state conditions, the kinematics of the flow is scarcely dependent on the rheological parameters close to the disk, however, for n < 1 long-range effects have been put forward. For modulated flow, in the high-frequency range, a behaviour very different from that observed for a Newtonian fluid was found. In the low-frequency range an asymptotic solution has been proposed which is of special interest in mass transfer problems.Presented at the Second Conference of European Rheologists, Prague, June 17–20, 1986  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号