首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Direct conversion of cellulose into 5-hydroxymethylfurfural(HMF) was performed by using single or combined metal chloride catalysts in 1-ethyl-3-methylimidazolium chloride(Cl) ionic liquid.Our study demonstrated formation of 2-furyl hydroxymethyl ketone(FHMK),and furfural(FF) simultaneously with the formation of HMF.Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature,time,and the type of metal chloride catalyst.Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives(HMF,FHMK,and FF) from cellulose.CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF(35.6%) with less concentrations of FHMK,and FF.Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides.Further optimization was carried out to produce total furans yield 75.9% by using FeCl3/CuCl2 combination.CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF(39.9%) with total yield(63.8%) of furans produced from the reaction.The temperature and time of the catalytic reaction played an important role in cellulose conversion,and the yields of products.Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals(5~20 min).  相似文献   

2.
The gelatinous and macroporous phase transfer catalysts with multiple active centers were synthesized by means of quarterisation of PEG tertiary amine and chloromethylated St DVB copolymer. They were examined as phase transfer catalysts in the reaction of n C 8H 17 Br with solid NaI. The experimental results showed that the reaction rate was first order with respect to the concentration of n C 8H 17 Br. The effects of catalyst structure on the catalytic activity were also investigated. The observed reaction rate constant ( k obsd ) increased as the degree of cross linking of polymer decreased. Macroporous catalysts showed a higher activity (2~2 5 times) than that of microporous catalysts with the same degree of cross linking of polymer, particle size and amount of supported PEG. Molecular weight of PEG also showed much influence on k obsd . As molecular weight of PEG rose properly, the catalysts showed a higher activity. The results were discussed from the aspect of triphase catalysis reaction mechanism.  相似文献   

3.
The dehydration of 2-picolinamide to produce 2-cyanopyridine was investigated thoroughly using silica supported potassium oxide as a heterogeneous catalyst. Both large specific surface area and pore size of SiO_2 (B) contributed to the favorable catalytic performance for the synthesis of 2-CP. In addition, the yield of 2-CP showed the linear relationship with the amounts of medium basicity of the catalysts,demonstrating that medium basic sites were the active sites of silica supported potassium oxide catalysts. The catalysts were further characterized by XRD and FT-IR to clarify the active species. The results indicated the Si—O—K group produced by the reaction of K_2CO_3 with Si—OH was the active species, which was further evidenced by the adjustment of the amount of Si—OH by silylation and hydroxylation procedure.  相似文献   

4.
In this work, a series of coal-based active carbon(CAC) catalysts loaded by Al2O3were prepared by sol-gel method and used for the simultaneous catalytic hydrolysis of carbonyl sulfide(COS) and carbon disulfide(CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, O2concentration, gas hourly space velocity(GHSV) and relative humidity(RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% Al2O3calcined at 300 ℃ had superior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2decrease. A small amount of O2introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.  相似文献   

5.
离子热合成磷铝分子筛   总被引:8,自引:0,他引:8  
AlPO-11 molecular sieve with AEL structure was ionothermally synthesized using ionic liquid solvent as medium. The effects of ionic liquid amount, synthesis time and temperature were investigated. The structure and characteristics of molecular sieve samples were characterized by X-ray diffraction(XRD),scanning electron microscopy (SEM), thermo gravimetric analysis(TGA). The results indicate that AlPO-11 molecular sieve could be synthesized by 1-ethyl-3-methylimidazolium bromide ([Emim]Br) ionic liquid as both the solvent and template.  相似文献   

6.
6-Chloro-2-diethylaminoethyl-3(2H)-pyridazinone was synthesized by the reaction of 6-chloro-3(2H)-pyridazinone and 2-diethylamionethyl chloride reaction in methylbenzene.Then the structure was characterized by means of ^1H NMR,IR,UV.By the method of ab initio HF and density functional theory(DFT) BeLYP,the geometric structures of the reagent intermediate,the product and its isomer were optimized and their total energies were calculated,The properties for the frontier molecular orbitals and the rules for energy distribution were analyzed systematically.It was shown that the energy of the nitrogen alkyl compound is lower than that of the oxy alkyl compound and the former is stable than the latter.This result is in accordance with the fact that 6-chloro-2-diethylaminoethyl-3(2H)-pyridazinone is synthesized by the reaction of 6-chloride-2-diethylaminoethyl-3(2H)-pyridazinone and 2-diethylaminoethyl chloride.  相似文献   

7.
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior.  相似文献   

8.
CuCl/沸石双功能羰基化催化剂催化合成叔碳酸   总被引:1,自引:0,他引:1  
Bifunctional carbonylation catalysts were prepared by introducing both of acidic and metallic sites into zeolites, such as β, M and Y, by which tertiary butyl acid was synthesized under mild reaction conditions. The effects of reaction temperature and the copper amount as well as the acid strength on the catalytic activity were investigated. The results show that when the content of cuprous for β, M and Y are 2 35%, 2 48% and 7 13% respectively, the carbonylation activity of the related sample is the greatest. In the reaction temperature range, lower temperature is favorable for yielding acid and higher temperature is favorable for yielding ester. The catalytic activity increases with the increase of the acid strength. The in situ FT IR study shows that Cu(Ⅰ) is the metallic active site.  相似文献   

9.
Sulfonic acid-functionalized heterogeneous catalysts have been evaluated in the catalytic dehydration of C(,monosaccharides into 5-hydroxymethylfurfural(HMF) using dimethyl sulfoxide(DMSO)as solvent.Sulfonic commercial resin Amberlyst-70 was the most active catalyst,which was ascribed to its higher concentration of sulfonic acid sites as compared with the other catalysts,and it gave 93 mol%yield of HMF from fructose in 1 h.With glucose as the starting material,which is a much more difficult reaction,the reaction conditions(time,temperature,and catalyst loading) were optimized for Amberlyst-70 by a response surface methodology,which gave a maximum HMF yield of 33 mol%at 147 °C with 23 wt%catalyst loading based on glucose and 24 h reaction time.DMSO promotes the dehydration of glucose into anhydroglucose,which acts as a reservoir of the substrate to facilitate the production of HMF by reducing side reactions.Catalyst reuse without a regeneration treatment showed a gradual but not very significant decay in catalytic activity.  相似文献   

10.
Sulfonic acid-functionalized heterogeneous catalysts have been evaluated in the catalytic dehydration of C(,monosaccharides into 5-hydroxymethylfurfural(HMF) using dimethyl sulfoxide(DMSO)as solvent.Sulfonic commercial resin Amberlyst-70 was the most active catalyst,which was ascribed to its higher concentration of sulfonic acid sites as compared with the other catalysts,and it gave 93 mol%yield of HMF from fructose in 1 h.With glucose as the starting material,which is a much more difficult reaction,the reaction conditions(time,temperature,and catalyst loading) were optimized for Amberlyst-70 by a response surface methodology,which gave a maximum HMF yield of 33 mol%at 147 °C with 23 wt%catalyst loading based on glucose and 24 h reaction time.DMSO promotes the dehydration of glucose into anhydroglucose,which acts as a reservoir of the substrate to facilitate the production of HMF by reducing side reactions.Catalyst reuse without a regeneration treatment showed a gradual but not very significant decay in catalytic activity.  相似文献   

11.
We synthesized 5-hydroxymethylfurfural (HMF) from carbohydrates using metal chloride catalysts. A 33.2 % yield of HMF was obtained from raw Dioscorea composita biomass with high starch by using a catalyst system composed of CrCl3·6H2O and LaCl3·6H2O at 120 °C for 4 h in N,N-dimethylacetamide containing lithium chloride. The catalyst system is also cost-effective for the conversion of soluble starch into HMF. In addition, levulinic acid was not formed in the reactions.  相似文献   

12.
The asymmetric unit of the title compound, 3C10H12N22+·2C10H11N2+·8C6H5NO5P, contains one and a half naphthalene‐1,5‐diaminium cations, in which the half‐molecule has inversion symmetry, one 5‐aminonaphthalen‐1‐aminium cation and four hydrogen (5‐carboxypyridin‐3‐yl)phosphonate anions. The crystal structure is layered and consists of hydrogen‐bonded anionic monolayers between which the cations are arranged. The acid monoanions are organized into one‐dimensional chains along the [101] direction via hydrogen bonds established between the phosphonate sites. (C)O—H...Npy hydrogen bonds (py is pyridine) crosslink the chains to form an undulating (010) monolayer. The cations serve both to balance the charge of the anionic network and to connect neighbouring layers via multiple hydrogen bonds to form a three‐dimensional supramolecular architecture.  相似文献   

13.
Hydrazinium metal ethylenediaminetetraacetate complexes of molecular formula (N2H5)2[Mg(edta)·H2O], (N2H5)3[Mn(edta)··H2O](NO3)·H2O, N2H5[Fe(edta)·H2O], N2H5[Cu(Hedta)·H2O] and N2H5[Cd(Hedta)·H2O]·H2O have been synthesized and characterized by elemental and chemical analysis, conductivity and magnetic measurements and spectroscopic techniques. The thermal behaviour of these complexes has been studied by thermogravimetry and differential thermal analysis. The data set provided by the simultaneous TG-DTA curves of the complexes shows the occurrence of three or four consecutive steps such as dehydration, ligand pyrolysis and formation of metal oxides. X-ray powder diffraction patterns of copper and cadmium complexes show that they are not isomorphous. These studies suggest seven coordination for Mg,Mn, Fe complexes and six coordination for Cu and Cd derivatives.  相似文献   

14.
In this work, effect of different ionic liquids (ILs) on 5‐hydroxymethylfurfural (HMF) preparation from glucose in N,N‐dimethylacetamide (DMA) over AlCl3 was revealed by a combined experimental and computational study. ILs used as cocatalysts in this work included N‐methyl‐2‐pyrrolidone hydrogen sulfate ([NMP]HSO4), N‐methyl‐2‐pyrrolidone methyl sulfate ([NMP]CH3SO3), N‐methyl‐2‐pyrrolidone chlorine ([NMP]Cl) and N‐methyl‐2‐pyrrolidone bromide ([NMP]Br) which were endowed with the same cation but different anions. According to the conclusion that fructose was intermediate product from glucose to HMF, we found fructose was transformed to more by‐products by [NMP]HSO4, making HMF yield decline significantly when glucose was treated as substrate. Neither glucose nor fructose could be converted by [NMP]CH3SO3 efficiently, leading to its no influence on glucose conversion to HMF. [NMP]Br had a higher selectivity for HMF from fructose than [NMP]Cl and AlCl3. Besides, Al3+ preferred to combine with Br?, slightly decreasing both the overall free energy barrier for glucose isomerization and activation barrier for H‐shift at 393.15 K. So a high HMF yield of 57% was obtained from glucose catalyzed by AlCl3 together with [NMP]Br under mild conditions.  相似文献   

15.
《Comptes Rendus Chimie》2016,19(4):450-456
Due to the increasing concerns about the availability and accessibility of fossil fuel reserves, and the subsequent effect of using them on climate change, production of green energy has recently become a hot area of interest in the research field. As a renewable energy source, biomass conversion to biofuels has shown a great potential towards green fuel production; particularly fructose conversion to 5-hydroxymethylfurfural (5HMF) as a building block material and source of green fuels and other high value chemicals.Herein, we investigate fructose dehydration to 5-hydroxymethylfurfural (5HMF) as a green fuel precursor, using a green self-catalysed environmentally friendly Deep Eutectic Solvent (DES), composed of inexpensive N,N-diethylethanolammonium chloride as organic salt and p-toluenesulfonic acid monohydrate (p-TSA) as a hydrogen bond donor (HBD) and novel medium for the fructose dehydration reaction.The advantage of using this DES is its ability to act as a solvent and catalyst simultaneously. It has shown to actively catalyse the dehydration reaction of fructose under moderate reaction conditions with a high 5HMF yield of 84.8% at a reaction temperature of 80 °C, reaction time of 1 h, DES mixing ratio of 1:0.5 salt to p-TSA (w/w), and initial fructose ratio of 5.  相似文献   

16.
The present paper reports the structures of bis(adeninium) zoledronate tetrahydrate {systematic name: bis(6‐amino‐7H‐purin‐1‐ium) hydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)‐1‐phosphonatoethyl]phosphonate tetrahydrate}, 2C5H6N5+·C5H8N2O7P22−·4H2O, (I), and bis(adeninium) zoledronate hexahydrate {systematic name: a 1:1 cocrystal of bis(6‐amino‐7H‐purin‐1‐ium) hydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)‐1‐phosphonatoethyl]phosphonate hexahydrate and 6‐amino‐7H‐purin‐1‐ium 6‐amino‐7H‐purine dihydrogen [1‐hydroxy‐2‐(1H‐imidazol‐3‐ium‐1‐yl)ethane‐1,1‐diyl]diphosphonate hexahydrate}, 2C5H6N5+·C5H8N2O7P22−·6H2O, (II). One of the adenine molecules and one of the phosphonate groups of the zoledronate anion of (II) are protonated on a 50% basis. The zoledronate group displays its usual zwitterionic character, with a protonated imidazole ring; however, the ionization state of the phosphonate groups of the anion for (I) and (II) are different. In (I), the anion has both singly and doubly deprotonated phosphonate groups, while in (II), it has one singly deprotonated phosphonate group and a partially deprotonated phosphonate group. In (I), the cations form an R22(10) base pair, while in (II), they form R22(8) and R22(10) base pairs. Two water molecules in (I) and five water molecules in (II) are involved in water–water interactions. The presence of an additional two water molecules in the structure of (II) might influence the different ionization state of the anion as well as the different packing mode compared to (I).  相似文献   

17.
A serial of protonated and layered transition metal oxides, including layered HTa WO_6, HNbMoO_6 as well as HNb WO_6, were synthesized by solid-state reaction and ion-exchange. The layered HTa WO_6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural(HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA,FT-IR, N2adsorption–desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 °C in dimethylsulfoxide.  相似文献   

18.
Three new iron(Ⅲ) phosphonate cage-like complexes with [Fe 4 ], [Fe 9 ] and [Fe 14 ] cores have been synthesized by solvothermal reaction with various starting materials. Magnetic studies show overall antiferromagnetic interaction presented in these cages.  相似文献   

19.
Four novel metal complexes [Cd(L)Cl](BF4)·H2O ( 1 ), [Cd(L)Br]2[CdBr4]·2H2O ( 2 ), [Cu(L)Br]Br ( 3 ), and [Cu(L)](NO3)2 ( 4 ) were prepared by the reactions of ligand N1‐(2‐aminoethyl)‐N1‐(2‐imidazolethyl)‐ethane‐1,2‐diamine (L) with metal salts under different reaction conditions. All of these complexes exhibit 1D chains, but different structures. The results showed that the pH value of the reaction solution and counter ions have remarkable impact on the structure of the complexes. Furthermore, complexes 1 and 2 represent fluorescence properties in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号