首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrabutylammonium (TBA+) salts of square‐planar monoanionic gold complexes of the unsymmetrically substituted Ar,H‐edt2? 1,2‐dithiolene ligands (Ar,H‐edt2?=arylethylene‐1,2‐dithiolato; Ar=phenyl ( 1 ?), 2‐naphthyl ( 2 ?), and 1‐pyrenyl ( 3 ?)) were synthesized and characterized by spectroscopic and electrochemical methods and the corresponding neutral species ( 1 , 2 , and 3 , respectively) were obtained in CH2Cl2 solution at room temperature by diiodine oxidation. The single‐crystal X‐ray diffraction structural data collected for (TBA+)( 2 ?), supported by DFT theoretical calculations, are consistent with the ene‐1,2‐dithiolate form of the ligand and the AuIII oxidation state. All complexes feature intense near‐IR absorptions (at about 1.5 μm) in their neutral states and Vis‐emitting properties in the 400–550 nm range, the energy of which is controlled by the charge of the complex in the case of the 3 ?/ 3 couple. The spectroscopic and electrochemical features of 1 x? and 2 x? (x=0, 1), both in their cis and trans conformations, were investigated by means of DFT and time‐dependent (TD) DFT calculations.  相似文献   

2.
To examine the interaction of uranyl with nitrogen containing groups of humic substances, the model complexes [UO2(H2O)4LN]2+, LN = NH2CH3, N(CH3)3, and NC5H5 in aqueous solution were studied computationally with an all‐electron relativistic density functional method. Results are compared with the corresponding penta‐aqua complex of uranyl. Although pyridine coordinates with about the same strength as L = H2O, methylamine binds ~10 kJ mol?1 stronger and trimethylamine ~40 kJ mol?1 weaker than a fifth aqua ligand. Yet, each of these ligands LN donates about the same amount of charge to uranyl as L = H2O. U? N bonds are ~10 pm longer than the U? O bonds of the aqua ligands. From the present model results, one does not expect that, when compared with carboxyl groups, monodentate N‐containing functional groups contribute significantly to uranyl complexation by humic substances. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
Reactions of a number of germylenes and dimethylsilylene with a phosphaalkene, 2,2-bis(trimethylsilyl)-1-phenyl-1-phosphaethene (1), were studied. The reaction of short-lived dimethylgermylene with 1 produced a phosphagermirane 3 (the first representative of a new class of heterocyclic compounds). Compound 3 was characterized in solution by 1H, 13C, 31P, and 29Si NMR spectroscopy. Subsequent reaction of 3 with dimethylgermylene results in 2,2,3,3-tetramethyl-4,4-bis(trimethylsilyl)-1-phenyl-2,3-digerma-1-phosphacyclobutane 4, which has not been reported so far. In order to rationalize different reactivities of germylenes towards alkenes and phosphaalkenes, the addition products of GeH2 to ethylene and phosphaethene (HP=CH2) were studied using the G2 computational scheme and DFT PBE technique. The adducts of GeMe2 (GeCl2) with HP=CH2 and of GeMe2 with PhP=C(SiH3)2 were also calculated by the DFT PBE method. According to calculations, the exothermicity, DE, of cycloaddition of GeH2 and GeMe2 to the phosphaalkenes HP=CH2 and PhP=C(SiH3)2 (43.5—39.7 kcal mol–1) is nearly twice as high as the exothermicity of cycloaddition of these germylenes to ethylene. In addition to the minimum corresponding to the three-membered cycle, a number of minima corresponding to quite stable donor-acceptor complexes in which the Ge atom is coordinated by the lone electron pair of the P atom in the phosphaalkene molecule were located on the potential energy surface of the germylene—phosphaalkene system. The complexation energy of the complex of GeH2 (GeMe2) with phosphaethene is 25.0 (16.9) kcal mol–1. For GeCl2, the exothermicity of cycloaddition to HP=CH2 decreases to 7.6 kcal mol–1 and the complexation energy decreases to 8.2 kcal mol–1.  相似文献   

4.
5.
The electronic structure of various complexes of pentavalent uranyl species, namely UO2+, is described, using DFT methods, with the aim of understanding how the structure of the ligands may influence the localisation of the unpaired 5f electron of uranium (V) and, finally, the stability of such complexes towards oxidation. Six complexes have been inspected: [UO2py5]+ (1), [(UO2py5)KI2] (2), [UO2(salan-tBu2)(py)K] (3), [UO2(salophen-tBu2)(thf)K] (4), [UO2(salen-tBu2)(py)K] (5), [and UO2-cyclo[6]pyrrole]1? (6), chosen to explore various ligands. In the five first complexes, the UO2+ species is well identified with the unpaired electron localized on the 5f uranium orbital. Additionally, for the salan, salen and salophen ligands, some covalent interactions have been observed, resulting from the presence of both donor and acceptor binding sites. In contrast, the last complex is best described by a UO22+ uranyl (VI) coordinated by the anionic radical cyclopyrrole, the highly delocalized π orbitals set stabilizing the radical behaviour of this ligand.  相似文献   

6.
AZMAT Rafia  UDDIN Fahim 《中国化学》2009,27(7):1237-1243
Photo decoloration of the methylene blue (MB) with reducing sugar, ribose (RH), was investigated on an especially designed optical processor using monochromatic radiation of 661 nm through a red filter. The dye molecule gets excited into triplet transient species (MBT) during flushing with lifetime of 10.1 ms into acetate buffered aqueous alcoholic medium, which later on reduces to protonated leuco dye (MBH). Photolysis of the aqueous alcholic medium generated highly reactive oxygen radical (O-•) with the production of 2e-, which led to probable oxidation of the ribose into respective acid while hydrogen abstraction and 2e- reduced the dye (MB) into MBH by following reaction  相似文献   

7.
Five 2-(1H-benzimidazol-2-yl)-phenol derivatives including 1H (HL1), 5-chloro-(HL2), 5-methyl-(HL3), 5,6-dichloro-(HL4), and 5,6-dimethyl-(HL5) were synthesized by the reaction of their corresponding benzene-1,2-diamine precursors and 2-hydroxybenzaldehyde which subsequently was employed in complexation with Fe(II) to prepare complexes C1C5, respectively. Indeed, in all complexes, the ligands were coordinated as bidentate, via the C=N nitrogen and hydroxy oxygen atom of benzimidazole moiety and phenol ring, respectively. The compounds were characterized by FTIR, UV–vis, 1H- and 13C-NMR spectropscopy, ICP, and elemental analysis (C, H, and N). The purity of these compounds was determined by melting point (m.p )and TLC. The synthesized ligands and complexes were geometrically optimized by Gaussian09 software at B3LYP/TZVP level of theory and satisfactory theoretical–experimental agreement was achieved for analysis of IR data of the compounds. Catalytic behavior of the iron(II) complexes was investigated for ethylene reactivity. On activation with diethylaluminum chloride (Et2AlCl), iron(II) complex (C4) showed the highest activity (1686 kg oligomers.mol?1(Fe).h?1) for ethylene oligomerization when it contains chlorine substituents and exhibits good selectivity for linear 1-butene. The steric and electronic effects of ligands were investigated in detail on the influence of their catalytic activities.  相似文献   

8.
The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2?, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.
Graphical Abstract ?
  相似文献   

9.
The electrochemical determination of uranyl was investigated by using carbon paste electrode modified with a Schiff base namely N,N??-bis(salicylidene)-2-hydroxy-phenylmethanediamine (SHPMD/CPE) and also in the presence of carbon nanotube (SHPMD/CNT/CPE). The both modified electrodes displayed an irreversible peak at E pa?=?0.798?V versus Ag/AgCl. The electrocatalytic reduction of uranyl has been studied on SHPMD/CNT/CPE, using cyclic and differential pulse voltammetry, chronocoulometry and linear sweep techniques. Electrochemical parameters including the diffusion coefficient (D), the electron transfer coefficient (??), the ionic exchange current (i) and the redox reaction rate constant (K) were determined for the reduction of uranyl on the surface of the modified electrodes. Linear range concentration is 0.002?C0.6???mol?L?1 and the detection limit of uranyl is 0.206?nmol?L?1. The proposed method was used to detect uranyl in natural waters and good recovery was achieved.  相似文献   

10.
Four new substituted amino acid ligands, N-(3-hydroxybenzyl)-glycine acid (HL1), N-(3-hydroxybenzyl)-alanine acid (HL2), N-(3-hydroxybenzyl)-phenylalanine acid (HL3), and N-(3-hydroxybenzyl)-leucine acid (HL4), were synthesized and characterized on the basis of 1H NMR, IR, ESI-MS, and elemental analyses. The crystal structures of their copper(II) complexes [Cu(L1)2]·2H2O (1), [Cu(L2)2(H2O)] (2), [Cu(L3)2(CH3OH)] (3), and [Cu(L4)2(H2O)]·H2O (4) were determined by X-ray diffraction analysis. The ligands coordinate with copper(II) through secondary amine and carboxylate in all complexes. In 2, 3, and 4, additional water or methanol coordinates, completing a distorted tetragonal pyramidal coordination geometry around copper. Fluorescence titration spectra, electronic absorption titration spectra, and EB displacement indicate that all the complexes bind to CT-DNA. Intrinsic binding constants of the copper(II) complexes with CT-DNA are 1.32?×?106?M?1, 4.32?×?105?M?1, 5.00?×?105?M?1, and 5.70?×?104?M?1 for 1, 2, 3, and 4, respectively. Antioxidant activities of the compounds have been investigated by spectrophotometric measurements. The results show that the Cu(II) complexes have similar superoxide dismutase activity to that of native Cu, Zn-SOD.  相似文献   

11.
The results of the interaction between the protonated chitosan (CHI) macromolecule and the acetate ion in dilute acetic acid solutions were studied by Fourier transform Raman spectroscopy and quantum-chemical modeling. The complexation of CHI with the acetate ion showed itself as the 934 cm?1 band in the Raman spectrum, which suggests the formation of [CHI+ · CH3COO?] type ion pairs. It was concluded that a comparative analysis of the integrated intensities of the Raman bands in the range 880–940 cm?1 makes it possible to judge about the relative content of hydrated acetate ions, CHI macromolecules of the [CHI+ · CH3COO?] complex, and acetic acid molecules not involved in CHI protonation.  相似文献   

12.
Reaction of the cyclic thioacetal (RS)2CHCHO [R=1/2×? (CH2)3? ] with HCCCOMe, followed by treatment with TsCl/DABCO (Ts=tosyl, DABCO=1,4‐diazabicyclo[2.2.2]octane) affords the mono‐protected 1,4‐benzoquinone dithioacetal. The reactivity of this SR‐protected 1,4‐benzoquinone has been compared with the behavior of the analogous OR‐protected acetal in copper‐catalyzed additions of ZnMe2 by using chiral phosphoramidite ligands. The activation energy for 1,4‐methylation of the latter OR‐acetals with ZnMe2 (>95 % ee) has been determined for two CuX2 pre‐catalysts (X=OAc, 12.2 kcal mol?1; X=OTf, 6.7 kcal mol?1; Tf=triflate). The dithioacetal SR aromatizes in the presence of CuI/ZnMe2 giving 1,4‐HOC6H4S(CH2)3SMe through C? S bond formation. The disparate behavior of these two very closely related substrates is in accordance with the formation of closely related cuprate intermediates that were optimized by DFT calculations, supporting the synthetic and kinetic studies and thus defining the mechanisms of both pathways.  相似文献   

13.
The complexation of Eu(III), Am(III) and Cm(III) with dicarboxylate anions with O, N or S donor groups was measured in I=6.60 mol⋅kg−1 (NaClO4) at temperatures of 0–60 °C by potentiometry and solvent extraction. The complexation thermodynamics of these complexes show that their stability is due to highly favorable complexation entropies because the complexation enthalpies are endothermic. Luminescence studies with Eu(III) and Cm(III) were used to measure the hydration numbers of the complexes. NMR spectra of 1H and 13C were used to determine the binding modes of La(III) with the ligands. The formation of 1:1:1 ternary complexes of M(EDTA) with the dicarboxylate ligands was studied to determine changes in coordination of the metal cation with formation of the ternary species. The complexation of ternary complexes changes from bidentate to monodentate as the chain length between the binding sites of the dicarboxylates increases from 1 (malonate) to 4 (adipate). DFT computations were used to confirm the structural aspects of the interaction of these complexes.  相似文献   

14.
MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10 kcal mol?1) Au???H hydrogen bonds with single H2O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong σ‐donor N‐heterocyclic carbene (NHC) complexes (ca. 5 kcal mol?1). The overall association (>11 kcal mol?1), however, is strengthened by co‐operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible.  相似文献   

15.
Pulse radiolysis of tetrahydrofuran (THF) and solutions of NaAIH4 in THF shows the formation of solvated electrons (e?s), their conversion to Na+-e?s) ion-pairs and ultimately the alkali metal anion (Na?).  相似文献   

16.
Platinum(II) cyclo-hexamethylenedithiocarbamate (HmDtc) complex, [Pt{S2CN(CH2)6}2] (I), and its solvated form, Pt{S2CN(CH2)6}2] · CHCl3 (II), are synthesized and characterized by the 13C MAS NMR data. The HmDtc ligands in structure I are not equivalent, whereas the solvation of the complex is accompanied by the structural unification of the initially nonequivalent HmDtc ligands. In addition, the spectra are characterized by the 13C-195Pt spin-spin coupling. The noncentrosymmetric molecular structure of compound I determined by X-ray diffraction analysis includes two nonequivalent dithiocarbamate ligands coordinated by the metal in the S,S′-bidentate mode. The central atom forming the [PtS4] chromophore (intraorbital dsp 2-hybrid state of platinum) shifts from the plane of four sulfur atoms by 0.07 Å in the vertex of the flattened tetragonal pyramid. The seven-membered heterocycles ?N(CH2)6 of the HmDtc ligands are oppositely directed in space relative to the [S4] plane (trans orientation). The thermal behavior of compounds I and II are studied by simultaneous thermal analysis. In both cases, the final product of the multistage thermal destruction of the complexes is reduced metallic platinum.  相似文献   

17.
Complete dehydrogenation of methane is studied on model Pt catalysts by means of state‐of‐the‐art DFT methods and by a combination of supersonic molecular beams with high‐resolution photoelectron spectroscopy. The DFT results predict that intermediate species like CH3 and CH2 are specially stabilized at sites located at particles edges and corners by an amount of 50–80 kJ mol?1. This stabilization is caused by an enhanced activity of low‐coordinated sites accompanied by their special flexibility to accommodate adsorbates. The kinetics of the complete dehydrogenation of methane is substantially modified according to the reaction energy profiles when switching from Pt(111) extended surfaces to Pt nanoparticles. The CH3 and CH2 formation steps are endothermic on Pt(111) but markedly exothermic on Pt79. An important decrease of the reaction barriers is observed in the latter case with values of approximately 60 kJ mol?1 for first C? H bond scission and 40 kJ mol?1 for methyl decomposition. DFT predictions are experimentally confirmed by methane decomposition on Pt nanoparticles supported on an ordered CeO2 film on Cu(111). It is shown that CH3 generated on the Pt nanoparticles undergoes spontaneous dehydrogenation at 100 K. This is in sharp contrast to previous results on Pt single‐crystal surfaces in which CH3 was stable up to much higher temperatures. This result underlines the critical role of particle edge sites in methane activation and dehydrogenation.  相似文献   

18.
The reaction of (C5Me5)2Th(CH3)2 with the phosphonium salts [CH3PPh3]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C5Me5)2Th[CHPPh3]X, rare terminal phosphorano‐stabilized carbenes with thorium. These complexes feature the shortest thorium–carbon bonds (≈2.30 Å) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C5Me5)2Th[κ2‐(C,C′)‐(CH2)(CH2)PPh2]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH3PPh3]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene.  相似文献   

19.
The formation constant (Kf) for the uranyl complex of 2,2′-dihydroxyazobenzene (DHAB) was measured with DHAB attached to poly(ethylenimine) (DHAB-PEI) at pH 7.7 to 9.4. The value of Kf was estimated from the equilibrium constant for extraction of uranyl ion from the uranyl complex of DHAB-PEI (UO2DHAB-PEI) with carbonate ion, which in turn was measured from the absorbance change observed on addition of bicarbonate ion to the solution of UO2DHAB-PEI. At pH 8.0, the uranyl-binding ability of DHAB was enhanced by about 104 times on attachment of DHAB to PEI. The major origin of the increased ability of uranyl ion complexation is the basic local microenvironment of PEI, which encourages ionization of the phenol groups of DHAB. Various other possible origins are discussed also. The log Kf for DHAB-PEI at pH 8.0 indicates that DHAB moieties of DHAB-PEI are mostly occupied, whereas DHAB unattached to PEI is mostly unoccupied by uranyl ion under conditions of seawater when only the pH and concentrations of bicarbonate and uranyl ions of seawater are considered. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3936–3942, 1999  相似文献   

20.
The reactions of py‐hz ligands ( L1–L5 ) with Pb(CF3SO3)2?H2O resulted in some rare examples of discrete single‐stranded helical PbII complexes. L1 and L2 formed non‐helical mononuclear complexes [Pb L1 (CF3SO3)2]?CHCl3 and Pb L2 (CF3SO3)2][Pb L2 CF3SO3]CF3SO3?CH3CN, which reflected the high coordination number and effective saturation of PbII by the ligands. The reaction of L3 with PbII resulted in a dinuclear meso‐helicate [Pb2 L3 (CF3SO3)2Br]CF3SO3?CH3CN with a stereochemically‐active lone pair on PbII. L4 directed single‐stranded helicates with PbII, including [Pb2 L4 (CF3SO3)3]CF3SO3?CH3CN and [Pb2 L4 CF3SO3(CH3OH)2](CF3SO3)3?2 CH3OH?2 H2O. The acryloyl‐modified py‐hz ligand L5 formed helical and non‐helical complexes with PbII, including a trinuclear PbII complex [Pb3 L5 (CF3SO3)5]CF3SO3?3CH3CN?Et2O. The high denticity of the long‐stranded py‐hz ligands L4 and L5 was essential to the formation of single‐stranded helicates with PbII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号