首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this paper the definition of micropolar protoclastic material bodies is given and with the help of the principle of virtual power, the variational principle of those bodies is derived. In terms of that same idea and the definition of micropolar protopotential presented here, the constitutive equations for nonlocal micropolar elastic continua are naturally derived.  相似文献   

2.
In this paper the constitutive theory for nonlocal micropolar continua which was proposed by A. C. Eringen is extended to the cases for nonlocal micropolar continua with implicity and with multiple interactions. Here nonlocal micropolar thermoelastic solids with implicity and with multiple interactions are cited as instances to illustrate the procedure for the establishment of their constitutive theories as well as two relevant theorems concerning the constitutive theories for those solids are given.  相似文献   

3.
IntroductionTheoryofmicropoloarthermoelasticitypresentedbyW .Nowackiisrestudiedinourpaper[1].Thispaperisadirectcontinuationofreference [1 ] .Theproblemsoccurringinthetheoriesofthermopiezoelectricityandmagnetothermoelasticityformicropolarcontinuaaresimilart…  相似文献   

4.
The possibility of associating the notion of quasi-particles with elastic wave modes is explored for three basic models of generalized continua: strain-gradient model (weak nonlocality), elasticity with a microstructure such as in Cosserat/micropolar materials, and a true nonlocal model involving the long-range interactions in the underlying crystal lattice. In each case a simplified one-dimensional model is considered. Approximate solutions involving small parameters and exhibiting scale effects are obtained for the Newtonian-like motion of associated quasi-particles. Interpretation for alternate wave-like and quasi-particle-like behaviors is given.  相似文献   

5.
基于非局部效应和表面效应的输流碳纳米管稳定性分析   总被引:1,自引:0,他引:1  
应用非局部黏弹性夹层梁模型分析双参数弹性介质中输送脉动流碳纳米管的稳定性. 新模型中同时考虑了由管道内、外壁上的薄表面层引起的表面弹性效应和表面残余应力,经典的欧拉梁模型因此通过引入非局部参数和表面参数得到了改进. 用平均法对其控制方程进行求解,得到了管道稳定性区域. 数值算例揭示了纳米材料的非局部效应、表面效应及两个弹性介质参数对管道固有频率、临界流速和动态稳定性的复杂影响,结论可为纳米流体机械的结构设计和振动分析提供理论基础.  相似文献   

6.
The purpose is to reestablish rather complete surface conservation laws for micropolar thermomechanical continua from the translation and the rotation invariances of the general balance law. The generalized energy-momentum and energy-moment of momentum tensors are presented. The concrete forms of surface conservation laws for micropolar thermomechanical continua are derived . The existing related results are naturally derived as special cases from the results proposed in this paper . The incomplete degrees of the existing surface conservation laws are clearly seen from the process of the deduction. The surface conservation laws for nonlocal micropolar thermomechanical continua may be easily obtained via localization .  相似文献   

7.
In this paper, the concept of hypo-elasticity is generalized to the micropolar continuum theory, and the general forms of the constitutive equations of the micropolar hypo-elastic materials are presented. A new co-rotational objective rate whose spin is the micropolar gyration tensor is introduced which describes the deformation of the material in view of an observer attached to the micro-structure. As special case, simplified versions of the proposed constitutive equations are given in which the same fourth-order elasticity tensors are used as in the micropolar linear elasticity. A 2-D finite element formulation for large elastic deformation of micropolar hypo-elastic media based on the simplified constitutive equations in conjunction with Jaumann and gyration rates is presented. As an example, buckling of a shallow arc is examined, and it is shown that an increase in the micropolar material parameters results in an increase in the buckling load of the arc. Also, it is shown that micropolar effects become important for deformations taking place at small scales.  相似文献   

8.
The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to linear cases is analyzed. The more general conservation principle of energy, energy balance equation and Hamilton principle of thermopiezoelectricity and magnetoelasticity for micropolar continua are established. The corresponding complete equations of motion and boundary conditions as well as balance equations of energy rate for local and nonlocal micropolar thermopiezoelectricity and magnetothermoelasticity are naturally derived. By means of two new functionals and total variation the boundary conditions of displacement, microrotation, electric potential and temperature are also given. Foundation item: the National Natural Science Foundation of China (10072024); the International Cooperation Project of the NSFC (10011130235) and the DFG (51520001); the Research Foundation of the Liaoning Education Committee (990111001) Biography: DAI Tian-min (1931-)  相似文献   

9.
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral(original)and differential formulations of Eringen's nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton's principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element(FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.  相似文献   

10.
A theory of gradient micropolar elasticity based on first gradients of distortion and bend-twist tensors for an isotropic micropolar medium has been proposed in Part I of this paper. Gradient micropolar elasticity is an extension of micropolar elasticity such that in addition to double stresses double couple stresses also appear. The strain energy depends on the micropolar distortion and bend-twist terms as well as on distortion and bend-twist gradients. We use a version of this gradient theory which can be connected to Eringen's nonlocal micropolar elasticity. The theory is used to study a straight-edge dislocation and a straight-wedge disclination. As one important result, we obtained nonsingular expressions for the force and couple stresses. For the edge dislocation the components of the force stress have extremum values near the dislocation line and those of the couple stress have extremum values at the dislocation line and for the wedge disclination the components of the force stress have extremum values at the disclination line and those of the couple stress have extremum values near the disclination line.  相似文献   

11.
Size-dependence is well observed for metal matrix composites, however the classical micromechanical model fails to describe this phenomenon. There are two different ways to consider this size-dependency: the first approach is to include the nonlocal effect by idealizing the matrix material as a high order continuum (e.g., micropolar or strain gradient); the second is to take into account the interface effect. In this work, we combine these two approaches together by introducing the interface effect into a micropolar micromechanical model. The interface constitutive relations and the generalized Young–Laplace equation for micropolar material model are firstly presented. Then they are incorporated into the micropolar micromechanical model to predict the effective bulk and shear moduli of a fiber-reinforced composite. Two intrinsic length scales appear: one is related to the microstructure of the matrix material, the other comes from the interface effect. The size-dependent effective moduli due to the nonlocal effect and interface effect can be synchronized or desynchronized for nanosize fibers, depending on the nature of the interface. For the relatively large fiber size, the size-dependence is dominated by the nonlocal effect. As expected, when the fiber size tends to infinity, classical result can be recovered.  相似文献   

12.
周期性弹性复合结构(声子晶体)中传播的弹性波存在特殊的色散关系:弹性波只能在某段频率范围内无损耗的传播,该频率范围称为通带.一维声子晶体的色散问题可以看作分层介质中弹性波的传播问题,利用二维弹性理论予以分析.为了研究非局部效应对声子晶体带隙特性的影响,将Eringen的二维非局部弹性理论引入到Hamilton体系下,利用精细积分与扩展的Wittrick Williams算法可获取任意频率范围内的本征解.通过对不同算例的数值计算,分析和对比了非局部理论方法与传统局部理论方法的差别.并进一步指出了该套算法的适用性和优势所在.  相似文献   

13.
IntroductionTheprinciplesofvirtualpowerandincrementalvirtualpoweraswellastheequationsofmotionandthestressboundaryconditionsofincrementalratetypeinclassicalcontinuummechanicshavebeensystematicallydiscussedbyKUANG[1].Thepurposeofthispaperistwofold :1 )Toes…  相似文献   

14.
Thelineartheoryofnonlocalelasticityhasbeenappliedtosomeproblemssuchasfracture,dislocationandwavepropagation[1].Itisusedtosolvemanyproblemswhicharenotexplainedbytheclassicalmechanics.Itispointedoutearlier[2],however,someimportantnonlocalpropertiesinth…  相似文献   

15.
In this paper, a nonlinear theory of nonlocal asymmetric, elastic solids is developed on the basis of basic theories of nonlocal continuum fieM theory and nonlinear continuum mechanics. It perfects and expands the nonlocal elastic fiteld theory developed by Eringen and others. The linear theory of nonlocal asymmetric elasticity developed in [1] expands to the finite deformation, We show that there is the nonlocal body moment in the nonlocal elastic solids. The noniocal body moment causes the stress asymmetric and itself is caused by the covalent bond formed by the reaction between atoms. The theory developed in this paper is applied to explain reasonably that curves of dispersion relation of one-dimensional plane longitudinal waves are not similar with those of transverse waves.  相似文献   

16.
The problem of diffraction of waves due to plane harmonic SH-waves incident normally on a line crack situated in an infinite micropolar elastic medium has been considered. The solution of the problem is obtained for both low and high frequencies for small coupling parameter. The stress-intensity factors in micropolar elastic medium have been derived. The stress-intensity factor for such problem in an elastic medium can be deduced from results obtained in this paper. It is also found that the effect of micropolarity in the propagation of waves is more significant in high frequencies than low frequencies.  相似文献   

17.
The purpose is to reestablish rather complete surface conservation laws for micropolar thermomechanical continua from the translation and the rotation invariances of the general balance law. The generalized energy-momentum and energy-moment of momentum tensors are presented. The concrete forms of surface conservation laws for micropolar thermomechanical continua are derived. The existing related results are naturally derived as special cases from the results proposed in this paper. The incomplete degrees of the existing surface conservation laws are clearly seen from the process of the deduction. The surface conservation laws for nonlocal micropolar thermomechanical continua may be easily obtained via localization. Contributed by DAI Tian-min, Original Member of Editorial Committee, AMM Foundation items: the National Natural Science Foundation of China (10072024); the Research Foundation of Liaoning Education Committee (990111001) Biography: DAI Tian-min (1931 ~)  相似文献   

18.
A gradient micropolar elasticity is proposed based on first gradients of distortion and bend-twist tensors for an isotropic micropolar medium. This theory is an extension of the theory of micropolar elasticity with couple stresses together with gradient elasticity in a way that in addition to hyper stresses, hyper couple stresses also appear. In particular, the strain energy, besides its dependence upon the distortion and bend-twist terms of a micropolar medium (Cosserat continuum), depends also on distortion and bend-twist gradients. Using a simplified but rigorous version of this gradient theory, we can connect it to Eringen's nonlocal micropolar elasticity. In addition, it is used to study a screw dislocation in gradient micropolar elasticity. One important result is that we obtained nonsingular expressions for the force and couple stresses. The components of the force stress have maximum values near the dislocation line and those of the couple stress have maximum values at the dislocation line.  相似文献   

19.
In this paper, it is proven that the balance equation of energy is the first integral of the balance equation of momentum in the linear theory of nonlocal elasticity. In other words, the balance equation of energy is not an independent one. It is also proven that the residual of nonlocal body force identically equals zero. This makes the transform formula of the nonlocal residual of energy much simpler. The linear nonlocal consitutive equations of elastic bodies are deduced in details, and a new formula to calculate the antisymmetric stress is given. Foundation item: the Natural Science Foundation of Jiangsu Province, China (BK97063)  相似文献   

20.
In the first part of our paper, we have extended the concepts of the classical convolution and the convolution scalar product given by I. Hlaváck and presented the concepts of the convolution vector and the convolution vector scalar product, which enable us to extend the initial value as well as the initial-boundary value problems for the equation with the operator coefficients to those for the system of equations with the operator coefficients.In the second part of this paper, based on the concepts of the convolution vector and the convolution vector scalar product, two fundamental types of reciprocal theorems of the non-local micropolar linear elastodynamics for inhomogeneous and anisotropic solids are derived.In the third part of this paper, based on the concepts and results in the first and second parts as well as the Lagrange multiplies method which is presented by W. Z. Chien, four main types of variational principles are given for the nonlocal micropolar linear elastodynamics for inhomogeneous and anisotropic solids. These are the counterparts of the variational principles of Hu-Washizu type, Hellinger-Reissner type and Gurtin type in classical elasticity as well as Hlaváck type and Iesan type in local micropolar and nonlocal elasticity. Finally, we have proved the equivalence of the last two main variational principles which are given in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号