首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The development of microplasmas for spectrochemical analysis by optical methods is discussed. Recent achievements in miniaturization are highlighted, especially for three types of plasmas, namely high-frequency plasmas, dc-discharges and microwave plasmas. The potentials of each of these groups of plasmas as sources for atomic emission spectrometry are discussed. Literature citations and experiments indicate that the plasmas are also very useful as atom reservoirs for atomic absorption spectrometry. Methods of sampling, including feeding with gas chromatography effluents, the use of electrothermal vaporization, and the evolution of gaseous species (as shown for the case of Hg vapor), are discussed as prominent interfaces to make use of these sources for elemental analysis.  相似文献   

2.
The state-of-art and trends in the development of optical spectrochemical trace analysis with inductively-coupled plasmas (i.c.p.), direct current plasmas (d.c.p.) and microwave-induced plasmas (m.i.p.) are discussed. Innovation in plasma optical emission spectrometry (o.e.s.) is shown ot lie in new sources such as the low-gas-consumption i.c.p., the air and helium i.c.p. as well as the toroidal m.i.p., which is operated at medium power and possibly with moleculary gases. Sample introduction has been improved by using new pneumatic nebulizers, flow injection, electrotheraml vaporization, hydride generation, direct sample insertion and direct solid sampling. Progress in the acquisition of spectral information is attained by high-resolution spectrometry, Fourier-transform spectrometry and by the use of multichannel detectors. D.c.p./o.e.s. is a mature technique for routin work and m.i.p./o.e.s. is a powerful tool for element-specific detection is chromatography. Plasma sources are also suitable atom reservoirs for atomic fluorescence spectrometry and for laser-enhanced ionization spectrometry. Trends in the figures of merit of optical plasma spectrochemical analysis are discussed.  相似文献   

3.
The microwave plasma torch (MPT), as a relative new source, has found extensive use in atomic spectrometry. In this review, the fundamental features and characteristics of the MPT are summarized and compared with other kinds of analytical atomic sources, such as the more popularly used inductively coupled plasma (ICP), the direct current plasma (DCP), as well as other kinds of microwave plasmas (MWPs). Since the MPT offers some attractive features, it has been used as an excitation source for atomic emission spectrometry (MPT-AES), including the atomic emission detection (AED) for gas chromatography (GC), liquid chromatography (LC) and supercritical fluid chromatography (SFC). Also, it has been used either as an ionization source for atomic mass spectrometry (MPT-AMS) or an atomization source for atomic fluorescence spectrometry (MPT-AFS). The historical development and recent improvements in these MPT atomic spectrometric techniques are evaluated with emphasis on the analytical advantages and limitations. In addition, the future research directions and the application prospects of MPT atomic spectrometry (MPT-AS) are discussed.  相似文献   

4.
Trends of development in atomic spectrometry with plasma sources for optical emission spectrometry and mass spectrometry are discussed, especially for inductively coupled plasmas and discharges under reduced pressure. Important fields of application such as materials analysis and environmental analysis with special reference to the speciation of traces of heavy metals are discussed.Introductory lecture at the Symposium on Plasma Techniques of the 1994 International Symposium on Microchemical Techniques, Montreux, May 16–20, 1994  相似文献   

5.
A series of organic reagents have been tested in atomic absorption measurement for signal enhancement of metal elements. Organic reagents like tetrabutylammonium bromide are demonstrated to enhance the absorption sensitivity to some specific elements such as calcium and chromium. A group of amines were found to have significant enhancement for chromium and calcium measurements. The function of organic reagents in flame and plasma atomic absorption spectrometry (AAS) was investigated in this work with emphases on mechanism of signal enhancement and interference suppression. An alternative mechanism of organic reagent enhancement in flame and plasma AAS has been suggested based on the experimental results obtained in this work. The reduction environments in flame and plasma produced by the organic reagents are considered as major reason for the signal enhancement.  相似文献   

6.
Although inductively coupled plasmas (ICPs) are widely used for multielement analysis microwave induced plasma (MIP) offers a great potential for a variety of applications. Modifications to incorporate MIP into commercial ICP direct reading spectrometer systems have been developed. A direct reading échelle spectrometer is described which opens new possibilities for the successful construction of commercial MIP-AES systems with the potential to run all of the typical methods worked out for earlier ICP-AES applications. Use of flow injection techniques and automation to couple with in situ concentration will likely offer a further improvement in the analytical performance of this system. Due to the capabilities demonstrated by this spectrometer it appears that hybrid instruments will be increasingly important for future developments in optical spectrometry. This is particularly true for very demanding areas such as atomic emission spectrometry. The system could be readily commercialized.  相似文献   

7.
Although inductively coupled plasmas (ICPs) are widely used for multielement analysis microwave induced plasma (MIP) offers a great potential for a variety of applications. Modifications to incorporate MIP into commercial ICP direct reading spectrometer systems have been developed. A direct reading échelle spectrometer is described which opens new possibilities for the successful construction of commercial MIP-AES systems with the potential to run all of the typical methods worked out for earlier ICP-AES applications. Use of flow injection techniques and automation to couple with in situ concentration will likely offer a further improvement in the analytical performance of this system. Due to the capabilities demonstrated by this spectrometer it appears that hybrid instruments will be increasingly important for future developments in optical spectrometry. This is particularly true for very demanding areas such as atomic emission spectrometry. The system could be readily commercialized.  相似文献   

8.
An overview of the activities of the research groups that have been involved in fabrication, development and characterization of microplasmas for chemical analysis over the last few years is presented. Microplasmas covered include: miniature inductively coupled plasmas (ICPs); capacitively coupled plasmas (CCPs); microwave-induced plasmas (MIPs); a dielectric barrier discharge (DBD); microhollow cathode discharge (MCHD) or microstructure electrode (MSE) discharges, other microglow discharges (such as those formed between “liquid” electrodes); microplasmas formed in micrometer-diameter capillary tubes for gas chromatography (GC) or high-performance liquid chromatography (HPLC) applications, and a stabilized capacitive plasma (SCP) for GC applications. Sample introduction into microplasmas, in particular, into a microplasma device (MPD), battery operation of a MPD and of a mini- in-torch vaporization (ITV) microsample introduction system for MPDs, and questions of microplasma portability for use on site (e.g., in the field) are also briefly addressed using examples of current research. To emphasize the significance of sample introduction into microplasmas, some previously unpublished results from the author's laboratory have also been included. And an overall assessment of the state-of-the-art of analytical microplasma research is provided.  相似文献   

9.
Current and emerging capabilities of plasma-source mass spectrometry (PS-MS) as it is employed for elemental speciation analysis are reviewed. Fundamental concepts and their advantageous aspects, experimental conditions, and analytical performance are described and illustrated by recent examples from the literature. Novel instrumentation, techniques, and strategies for inductively-coupled plasma mass spectrometry (ICP-MS), microwave-induced plasma (MIP) mass spectrometry, glow-discharge (GD) mass spectrometry, and electrospray ionization (ESI), among others, are described. The use of ionization sources that provide tunable ionization, others that can be modulated between different sets of operating conditions, and others used in parallel is also examined.  相似文献   

10.
The microwave-induced plasma has been widely studied as a spectrochemical excitation source. The plasma is generally maintained in a quartz tube, and energy coupled via a cavity or antenna. Previous work has shown the importance of the electron density; plasma performance is improved as the instrumental parameters are adjusted to increase the electron density. Another method to increase the electron density is to constrict the plasma. Additionally, energy losses via wall-collision would be decreased if the plasma were moved away from the walls. This communication presents such a study, in which the plasma is ‘pinched’ by the application of an external magnetic field. Preliminary results show an increase in intensity by a factor of two. The constriction also tends to improve the atomization processes. Measurements performed on plasmas which contain carbon monoxide show a greater increase in the carbon atomic emission than the carbon monoxide molecular emission.  相似文献   

11.
This review article presents an overview of halogen-specific detection in gas chromatography (GC) and liquid chromatography (LC). Attention is primarily focused on the use of plasma emission spectroscopy and plasma mass spectrometry as detectors, but other halogen-selective detection principles are also mentioned. Different instrumental configurations are discussed both with respect to technical set-up and performance, the principal reasons for halogen-selective detection are highlighted, and recent applications are reviewed from areas such as environmental chemistry, petroleum characterization, and drug analysis.  相似文献   

12.
Molecular absorption spectrometry (MAS), originally developed in the 1970s, is a technique to determine non-metals in flames and graphite furnaces by monitoring the absorbance of diatomic molecules. Early studies employed low resolution instruments designed for line source atomic absorption, which provided a limited choice of analytical wavelengths, insufficient spectral resolution, and spectral interferences. However, the development of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) instrumentation has allowed the analysis of challenging samples for non-metals as well as some difficult elements to determine by AAS, such as aluminum and phosphorus. In this review, theory and analytical considerations for MAS are discussed. The principles and limitations of low resolution MAS are described, along with its applications. HR-CS AAS instrumentation is reviewed, emphasizing performance characteristics most relevant for MAS. Applications of flame and HR-CS GFMAS are reviewed, highlighting the most significant work to date. The paper concludes with an evaluation of the enhanced analytical capabilities provided by HR-CS MAS.  相似文献   

13.
The paper reviews the past 11 years of literature on the application of diode lasers in atomic absorption spectrometry with graphite furnaces (GF), plasmas and flames as atomizers. Experimental arrangements and techniques for powerful absorption measurements as well as the theoretical background are covered. The analytical possibilities of high-resolution spectroscopy, including Doppler-free techniques for isotope selective measurements and isotope dilution analysis are discussed and various applications of element-selective detection by diode laser atomic absorption in combination with separation techniques, such as liquid (LC) and gas chromatography (GC), and with laser ablation of solid samples, are presented.  相似文献   

14.
Recent progress in flow injection on-line separation and preconcentration techniques for electrothermal atomic absorption spectrometry (ETAAS) are reviewed, stressing the advancements made within the past 2 or 3 years. Important trends and potentials for future development are discussed, including the use of air-transport and air-segmentation in on-line separation systems, the use of knotted reactors as a sorption medium, and other designs for on-line coprecipitation and solvent extraction systems to improve the robustness and efficiency of on-line separation systems for ETAAS.  相似文献   

15.
Miniaturized microwave, high-frequency, and dc-powered microplasmas are discussed, with emphasis on the state-of-the-art and development trends. Specific atomic emission sources discussed include the microstrip microwave plasma operated in argon and helium at ca 10-30 W and below 1 L min(-1) gas at atmospheric pressure, the capacitively coupled microplasma, operated at 13.56 MHz, 5-25 W, and 17-150 mL min(-1) helium, the miniaturized inductively coupled plasma operated at several watts and reduced pressure, and dc glow-discharge plasmas on a chip, including a barrier-layer discharge as atom reservoir for atomic absorption spectrometry. Diagnostics for these sources are discussed and some of their figures of merit are compared with those of conventional sources. Current possibilities for introduction of gaseous samples are reported and scope for further development and outlook are both discussed.  相似文献   

16.
Li Y  Yin XB  Yan XP 《Analytica chimica acta》2008,615(2):105-114
Speciation information is vital for the understanding of the toxicity, mobility and bioavailability of elements in environmental or biological samples. Hyphenating high resolving power of separation techniques and element-selective detectors provides powerful tools for studying speciation of trace elements in environmental and biological systems. During the last five years several novel hybrid techniques based on capillary electrophoresis (CE) and atomic spectrometry have been developed for speciation analysis and metal-biomolecule interaction study in our laboratory. These techniques include CE on-line coupled with atomic fluorescence spectrometry (AFS), chip-CE on-line coupled with AFS, CE on-line coupled with flame heated quartz furnace atomic absorption spectrometry (FHF-AAS), and CE on-line coupled with electrothermal atomic absorption spectrometry (ETAAS). The necessity for the development of these techniques, their interface design, and applications in speciation analysis and metal-biomolecule interaction study are reviewed. The advantages and limitations of the developed hybrid techniques are critically discussed, and further development is also prospected.  相似文献   

17.
微波等离子体光源是一类重要的有较强激发能力的原子发射光谱光源,主要包括微波感生等离子体光源,电容耦合微波等离子体光源及微波等离子体炬光源。本文是微波等离子体光谱技术发展的第二部分,主要介绍了电容耦合微波等离子体光源及微波等离子体炬光源的结构原理和性能。并对它们的技术特点和进展进行评述。  相似文献   

18.
New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.  相似文献   

19.
袁懋  师宇华  于爱民  张寒琦  金钦汉 《色谱》2007,25(3):310-315
分别介绍和评价了用于气相色谱的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于气相色谱的微波等离子体原子发射光谱检测器的发展作了展望。  相似文献   

20.
简单介绍了原子荧光光谱技术的建立及其在国内的发展历程,重点介绍了蒸气发生-原子荧光光谱(VG-AFS)仪在我国的技术研究、仪器研制及应用;详细总结了蒸气发生-原子荧光光谱(VG-AFS)法在我国标准化方面的研究.我国在多通道原子荧光光谱仪、原子荧光形态分析仪等关键技术及其应用等方面取得了开创性的研究成果,并形成了一系列...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号