首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

2.
With the formation of novel organometallic macromolecules in mind, the polycondensation of transition metal ions and bridged cyclopentadienyl ligands was studied. To this end solvated salts MX2 (M = Fe, Ni, and Cr) were treated with a ligand that consisted of two doubly silyl-bridged cyclopentadienyl anions. For M = Fe and diluted solutions a series of rings Oi was obtained that consisted of a minimum of six (O6) and up to 17 (O17) ferrocene moieties in the backbone. They were separated partly by medium pressure liquid chromatography. The macrocycles were established by high-resolution MALDI-TOF mass spectroscopy which also yielded the molecular weight, the polydispersion, and the mean ring size, chi n, of the mixture of reaction products. When the reaction temperature was decreased from 25 degrees C to -20 degrees C, chi n increased from 8.1 to 10.8. Ferrocene-containing chains, lambda j, with 2 < or = j < or = 12 were obtained in addition to rings in the presence of water; the terminal groups were cyclopentadiene moieties. The reaction of two ferrocene-fused cyclopentadienyl anions with [FeCl2(thf)1.5] gave chains consisting of exclusively uneven numbers of ferrocenes. For M = Ni and Cr the formation of doubly silyl-bridged nickelocenes and chromocenes was proven by NMR spectroscopy. MALDI-TOF mass spectroscopy showed nickelocene-containing chains accompanied by some rings. For M = Fe the H,H-DQF COSY spectra established the structure of O7, O8, and O9. The oxidation of the ferrocene-containing ring O7 with I2, NOPF6, and AgPF6 gave ionic species [O7]n+ which suffered from low stability. The ring-closing reaction is discussed, and the relative abundance of the various rings is related to MNDO calculations.  相似文献   

3.

Nine new [metal uric acid] complexes [M(Ua) n ]°·XH 2 O have been synthesized. These complexes have been characterized by elemental analysis, X-ray diffraction (XRD), magnetic susceptibility ( w eff. ), FTIR spectra, thermal analysis (TG & DTA), and electronic spectra (UV/visible). Uric acid (HUa) coordinates as a bidentate ligand to Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Fe(III) through the protonated N-7 within the imidazole ring and O-6 within the pyrimidine ring. Uric acid forms neutral metal urate complexes with all the above metal ions. The quantitative compositions were determined as [M(Ua) 2 ·(H 2 O) 2 ]°·XH 2 O where M(II)=Mn, Fe, Co, Ni, Cu, Zn and X=2, 4, 2, 4, 2, 2, respectively. The M(II) complexes exhibit an isostructural octahedral coordination with N-7, O-6 of two uric acid ligand molecules, and O of two water molecules. Compositions were also determined as [M(Ua) 3 ]°·YH 2 O where M(III)=Al, Cr, Fe and Y=6, 3, 3 respectively. All the M(III) complexes form an isostructural octahedral coordination with N-7 and O-6 of three uric acid ligand molecules. Iron(III) complexes prepared with N 1 , N 3 and N 9 -methyl uric acid yielded brown complexes with a metal ligand ratio of 1 3, while N 7 -methyl uric acid did not yield a complex due to blockage of N-7 with a methyl group.  相似文献   

4.
Seven new cyano-bridged heterometallic systems have been prepared by assembling [M'(rac-CTH)]n+ complexes (M' = CrIII, NiII, CuII), which have two cis available coordination positions, and [M(CN)6]3- (M = FeIII, CrIII) and [Fe(CN)2(bpy)2]+ cyanometalate building blocks. The assembled systems, which have been characterized by X-ray crystallography and magnetic investigations, are the molecular squares (meso-CTH-H2)[{Ni(rac-CTH)}2{Fe(CN)6)}2].5H2O (2) and [{Ni(rac-CTH)}2{Fe(CN)2(bpy)2}2](ClO4)4.H2O (5), the bimetallic chain [{Ni(rac-CTH)}2{Cr(CN)6)}2Ni(meso-CTH)].4H2O (3), the trimetallic chain [{Ni(rac-CTH)}2{Fe(CN)6)}2Cu(cyclam)]6H2O (4), the pentanuclear complexes [{Cu(rac-CTH}3{Fe(CN)6}2].2H2O (6) and [{Cu(rac-CTH)}3{Cr(CN)6)}2].2H2O (7), and the dinuclear complex [Cr(rac-CTH)(H2O)Fe(CN)6].2H2O (8). With the exception of 5, all compounds exhibit ferromagnetic interaction between the metal ions (JFeNi = 12.8(2) cm-1 for 2; J1FeCu= 13.8(2) cm-1 and J2FeCu= 3.9(4) cm-1 for 6; J1CrCu= 6.95(3) cm-1 and J2CrCu= 1.9(2)cm-1 for 7; JCrFe = 28.87(3) cm-1 for 8). Compound 5 exhibits the end of a transition from the high-spin to the low-spin state of the octahedral FeII ions. The bimetallic chain 3 behaves as a metamagnet with a critical field Hc = 300 G, which is associated with the occurrence of week antiferromagnetic interactions between the chains. Although the trimetallic chain 4 shows some degree of spin correlation along the chain, magnetic ordering does not occur. The sign and magnitude of the magnetic exchange interaction between CrIII and FeIII in compound 8 have been justified by DFT type calculations.  相似文献   

5.
Thermal activation of molecular oxygen is observed for the late‐transition‐metal cationic complexes [M(H)(OH)]+ with M=Fe, Co, and Ni. Most of the reactions proceed via insertion in a metal? hydride bond followed by the dissociation of the resulting metal hydroperoxide intermediate(s) upon losses of O, OH, and H2O. As indicated by labeling studies, the processes for the Ni complex are very specific such that the O‐atoms of the neutrals expelled originate almost exclusively from the substrate O2. In comparison to the [M(H)(OH)]+ cations, the ion? molecule reactions of the metal hydride systems [MH]+ (M=Fe, Co, Ni, Pd, and Pt) with dioxygen are rather inefficient, if they occur at all. However, for the solvated complexes [M(H)(H2O)]+ (M=Fe, Co, Ni), the reaction with O2 involving O? O bond activation show higher reactivity depending on the transition metal: 60% for the Ni, 16% for the Co, and only 4% for the Fe complex relative to the [Ni(H)(OH)]+/O2 couple.  相似文献   

6.
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize in the monoclinic space group C2/c. The self-assembly between [MnII(L)]2+ with [M(III)(CN)6]3-, where M(III) = Cr (5), Fe (6, 7, 8), forms three types of compounds. Compounds 5 and 6 are isostructural (monoclinic, space group P2(1)/n), and the structures comprise anionic linear chains [(MnII(L))(M(III)(micro-CN)2(CN)4)]n(n-) with cationic trinuclear complexes [(MnII(L)(H2O))2(M(III)(micro-CN)2(CN)4)]+ as counterions. Using an excess of K3[FeIII(CN)6], an analogous compound to 6 but with K+ as counterion is obtained (7), which crystallizes in the triclinic space group P1. Compound 8 consists of 2-D layers with formula [(MnII(L))3(FeIII(micro-CN)4(CN)2)(FeIII(micro-CN)2(CN)4)]n x 2nMeOH; it crystallizes in the monoclinic space group P2(1)/n. The magnetic properties were investigated for all samples. In particular, compound 5, which shows antiferromagnetic exchange interactions between Mn(II) and Cr(III) ions through cyanide bridging ligands, has been studied in detail; the magnetic exchange parameter amounts to J = -7.5(7) cm(-1). Compound 8 shows a magnetically ordered phase below 6.4 K which is confirmed by M?ssbauer spectroscopy; two hyperfine split spectra were observed below Tc from which IJI values of 2.1 and 1.6 cm(-1) could be deduced.  相似文献   

7.
Titanium dioxide (TiO(2)) doped with transition-metal ions (M) has potentially broad applications in photocatalysis, photovoltaics, and photosensors. One approach to these materials is through controlled hydrolysis of well-defined transition-metal titanium oxo cage compounds. However, to date very few such cages have been unequivocally characterized, a situation which we have sought to address here with the development of a simple synthetic approach which allows the incorporation of a range of metal ions into titanium oxo cage arrangements. The solvothermal reactions of Ti(OEt)(4) with transition-metal dichlorides (M(II)Cl(2), M = Co, Zn, Fe, Cu) give the heterometallic transition-metal titanium oxo cages [Ti(4)O(OEt)(15)(MCl)] [M = Co (2), Zn (3), Fe (4), Cu (5)], having similar MTi(4)(μ(4)-O) structural arrangements involving ion pairing of [Ti(4)O(OEt)(15)](-) anion units with MCl(+) fragments. In the case of the reaction of MnCl(2), however, two Mn(II) ions are incorporated into this framework, giving the hexanuclear Mn(2)Ti(4)(μ(4)-O) cage [Ti(4)O(OEt)(15)(Mn(2)Cl(3))] (6) in which the MCl(+) fragments in 2-5 are replaced by a [ClMn(μ-Cl)MnCl](+) unit. Emphasizing that the nature of the heterometallic cage is dependent on the metal ion (M) present, the reaction of Ti(OEt)(4) with NiCl(2) gives [Ti(2)(OEt)(9)(NiCl)](2) (7), which has a dimeric Ni(μ-Cl)(2)Ni bridged arrangement arising from the association of [Ti(2)(OEt)(9)](-) ions with NiCl(+) units. The syntheses, solid-state structures, spectroscopic and magnetic properties of 2-7 are presented, a first step toward their applications as precursor materials.  相似文献   

8.
Reactions between [M'(III)(CN)(6)](3-) anions (M' = Co, Cr, or Fe) and mononuclear complexes of M(II) ions (M = Cr, Mn, Co, Ni, or Zn) produce a family of pentanuclear clusters {[M(tmphen)(2)](3)[M'(CN)(6)](2)]}. The core of the clusters is formed by five metal ions that are bridged through six CN- linkers into a trigonal bipyramid, with M and M' ions occupying equatorial and axial positions of the bipyramid, respectively. Three of the CN- ligands from each M' center remain terminal and point toward the outside of the cluster, along the trigonal axes. Studies of magnetic coupling in the {[M(tmphen)(2)](3)[M'(CN)(6)](2)]} family of clusters revealed a similarity between the observed magnetic exchange constants and the values estimated for the molecule-based magnets of the Prussian blue family. The type of the magnetic exchange varies across the series, changing from antiferromagnetic for M = Cr and Mn to ferromagnetic for M = Co and Ni. Complexes {[M(tmphen)(2)](3)[M'(CN)(6)](2)]}, which contain diamagnetic Co(III) ions in the axial positions, serve as convenient model compounds for an accurate assessment of the magnetic parameters for the equatorial M ions in the absence of magnetic interactions. The {[Co(tmphen)(2)](3)[Cr(CN)(6)](2)]} cluster exhibits cyanide linkage isomerism, the relative amount of which depends on the synthetic conditions.  相似文献   

9.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

10.
The use of the recently prepared polynitrile ligand tcnopr3OH(-) ([(NC)(2)CC(OCH(2)CH(2)CH(2)OH)C(CN)(2)](-)) with different salts of Fe(II), Co(II), and Ni(II) has led to a very rare example of linkage isomerism in a coordination chain. These pairs of linkage isomers can be formulated as [M(tcnopr3OH-κN,κO)(2)(H(2)O)(2)]; M = Fe (1), Co (3), and Ni(5) and [M(tcnopr3OH-κN,κN')(2)(H(2)O)(2)]; M = Fe (2), Co (4), and Ni (6). Compounds 1-2, 3-4, and 5-6 are three pairs of linkage isomers since they present the same formula and chain structure and they only differ in the connectivity of the polynitrile ligand bridging the metal ions in the chain: through a N and an O atom (1κN:2κO-isomer) or through two N atoms (1κN:2κN'-isomer). The magnetic properties show, as expected, very similar behaviors for both isomers.  相似文献   

11.
The hydrothermal reactions of Na2MoO4 x 2H2O and 2,2':6',2"-terpyridine with appropriate salts of Fe(II), Cu(II), and Zn(II) yield a variety of mixed metal oxide phases. The Cu(II) system affords the molecular cluster [Cu(terpy)MoO4].3H2O (MOXI-40 x 3H2O), as well as a one-dimensional material [Cu(terpy)Mo2O7](MOXI-41) which is constructed from (Mo4O14)4- clusters linked through (Cu(terpy))2+ units. In constrast, the Zn(II) phase of stoichiometry identical to that of MOXI-41, [Zn(terpy)Mo2O7](MOXI-42), exhibits a one-dimensional structure characterized by a (Mo2O7)n2n- chain decorated with peripheral (Zn(terpy))2+ subunits. The iron species [(Fe(terpy))2Mo4O12](MOXI-43) is also one-dimensional but exhibits [(Fe(terpy))2(MoO4)2]2+ rings linked through (MoO4)2- tetrahedra. A persistent structural motif which appears in MOXI-40, MOXI-41, and MOXI-43 is the [(M(terpy))2(MoO4)2]n cluster with a cyclic )(M2Mo2O4) core. In general, the secondary metal sites M(II, III) are effective bridging groups between molybdate subunits of varying degrees of aggregation. Furthermore, the ligands passivate the bimetallic oxide from spatial extension in two or three dimensions and provide a routine entree into low-dimensional structural types of the molybdenum oxide family of materials.  相似文献   

12.
Carboxylate-bridged complexes of transition metals, M(II)=Mn(II), Fe(II), Co(II), Ni(II), Zn(II), were synthesised by reaction of M(II) salts with dl-malate and L-malate under hydrothermal conditions. These complexes form four series of compounds, which have been fully characterised structurally, thermally and magnetically. The crystal structures of the new chiral compounds, [Mn(L-mal)(H(2)O)] (1), [Fe(L-mal)(H(2)O)] (2), [Co(L-mal)(H(2)O)] (3) and [Zn(L-mal)(H(2)O)] (4) as well as those of the bimetallic analogues [Mn(0.63)Co(0.37)(L-mal)(H(2)O)] (5) and [Mn(0.79)Ni(0.21)(L-mal)(H(2)O)] (6) have been solved by single-crystal X-ray diffraction. The six L-malate monohydrates crystallise in the chiral space group P2(1)2(1)2(1) and consist in a three-dimensional network of metal(II) centres in octahedral sites formed by oxygen atoms. These structures were compared to those of the chiral trihydrate compounds [Co(L-mal)(H(2)O)]2 H(2)O (7), [Ni(L-mal)(H(2)O)]2 H(2)O (8) and [Co(0.52)Ni(0.48)(L-mal)(H(2)O)]2 H(2)O (9), which exhibit helical chains of M(II) centres, and those of dl-malate dihydrates [Co(dl-mal)(H(2)O)]H(2)O (10) and [Ni(dl-mal)(H(2)O)H(2)O (11) and trihydrate [Mn(L-mal)(H(2)O)]2 H(2)O (12) highlighting the great flexibility of the coordination by the malate ligand. UV/Vis spectroscopic results are consistent with octahedral coordination geometry of high-spin transition-metal centres. Extensive magnetic characterisation of each homologous series indicates rather weak coupling interaction between paramagnetic centres linked through carboxylate bridges. Curie-like paramagnetic, antiferromagnetic, ferromagnetic or weak ferromagnetic behaviour is observed and discussed on the basis of the structural features. The bimetallic compounds 5 and 6 represent new examples of chiral magnets.  相似文献   

13.
The synthesis, activation, and heats of CO(2) adsorption for the known members of the M(3)(BTC)(2) (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO(2)-metal interactions for CO(2) storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO(2) adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO(2) affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni(3)(BTC)(2)(Me(2)NH)(2)(H(2)O) and the increased charge of the dimetal secondary building unit in [Ru(3)(BTC)(2)][BTC](0.5).  相似文献   

14.
The variety of known very stable PF(3) metal derivatives analogous to metal carbonyls suggests the synthesis of SF(3) metal derivatives analogous to metal nitrosyls. However, the only known SF(3) metal complex is the structurally uncharacterized (Et(3)P)(2)Ir(CO)(Cl)(F)(SF(3)) synthesized by Cockman, Ebsworth, and Holloway in 1987 and suggested by electron counting to have a one-electron donor SF(3) group rather than a three-electron donor SF(3) group. In this connection, the possibility of synthesizing SF(3) metal derivatives analogous to metal nitrosyls has been investigated using density functional theory. The [M]SF(3) derivatives with [M] = V(CO)(5), Mn(CO)(4), Co(CO)(3), Ir(CO)(3), (C(5)H(5))Cr(CO)(2), (C(5)H(5))Fe(CO), and (C(5)H(5))Ni analogous to known metal nitrosyl derivatives are all predicted to be thermodynamically disfavored with respect to the corresponding [M](SF(2))(F) derivatives by energies ranging from 19.5 kcal/mol for Mn(SF(3))(CO)(4) to 5.4 kcal/mol for Co(SF(3))(CO)(3). By contrast, the isoelectronic [M]PF(3) derivatives with [M] = Cr(CO)(5), Fe(CO)(4), Ni(CO)(3), (C(5)H(5))Mn(CO)(2), (C(5)H(5))Co(CO), and (C(5)H(5))Cu are all very strongly thermodynamically favored with respect to the corresponding [M](PF(2))(F) derivatives by energies ranging from 64.3 kcal/mol for Cr(PF(3))(CO)(5) to 31.6 kcal/mol for (C(5)H(5))Co(PF(3))(CO). The known six-coordinate (Et(3)P)(2)Ir(CO)(Cl)(F)(SF(3)) is also predicted to be stable relative to the seven-coordinate (Et(3)P)(2)Ir(CO)(Cl)(F)(2)(SF(2)). Most of the metal SF(3) complexes found in this work are singlet structures containing three-electron donor SF(3) ligands with tetrahedral sulfur coordination. However, two examples of triplet spin state metal SF(3) complexes, namely, the lowest energy (C(5)H(5))Fe(SF(3))(CO) structure and a higher energy Co(SF(3))(CO)(3) structure, are found containing one-electron donor SF(3) ligands with pseudo square pyramidal sulfur coordination with a stereochemically active lone electron pair.  相似文献   

15.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

16.
New polyoxometalate 'sandwiches' have been formed where two [P(2)W(15)O(56)](12-) lacunary Dawson clusters encapsulate two transition metal ions to give clusters with the general formula [M(II)(2)(P(2)W(15)O(56))(2)](20-) (where M = Mn, Co, and Ni respectively), [Fe(III)(2)(P(2)W(15)O(56))(2)](18-), and [Cu(II)(4)(P(2)W(15)O(56))(2)](16-). The Mn, Co, and Ni clusters exhibit a hitherto unseen αββα isomeric geometry and all five compounds are associated with tetrabutylammonium cations which allow for their dissolution in non-aqueous solvent.  相似文献   

17.
Binuclear Cp(2)M(2)(μ-C(8)H(8)) derivatives have been synthesized for M = V, Cr, Co, and Ni and have now been studied theoretically for the entire first row of transition metals from Ti to Ni. The early transition metal derivatives Cp(2)M(2)(μ-C(8)H(8)) (M = Ti, V, Cr. Mn) are predicted to form low-energy cis-Cp(2)M(2)(μ-C(8)H(8)) structures with a folded C(8)H(8) ring (dihedral angle ~130°) and short metal-metal distances suggesting multiple bonding. These predicted structures are close to the experimental structures for M = V, Cr with V≡V and Cr≡Cr bond lengths of ~2.48 and ~2.36 ?, respectively. The middle to late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Mn, Fe, Co, Ni) with a twisted μ-C(8)H(8) ring and no metal-metal bonding. The hapticity of the central μ-C(8)H(8) ring in such structures ranges from five for Mn and Fe to four for Co and three for Ni and thus depend on the electronic requirements of the central metal atom. This leads to the favored 18-electron configuration for both metal atoms in the singlet Fe, Co, and Ni structures but only 17-electron metal configurations in the triplet Mn structure. In addition, the late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Fe, Co, Ni), with the tub conformation of the μ-C(8)H(8) ring functioning as a tetrahapto (M = Fe, Co) or trihapto (M = Ni) ligand to each CpM group. A μ-C(8)H(8) ring in the tub conformation also bonds to two CpFe units as a bis(tetrahapto) ligand in both singlet and triplet cis-Cp(2)Fe(2)(μ-C(8)H(8)) structures.  相似文献   

18.
The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes.  相似文献   

19.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

20.
A series of two-dimensional (2D) oxalate-based compounds, namely [N(n-C4H9)4][M(II)Cr(III)(ox)3] (M(II) = Mn, Fe; ox = C2O4(2-)) and [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][M(II)M(III)(ox)(3)] ((M(II), M(III)) =(Mn, Cr), (Fe, Cr), (Mn, Fe)) were synthesised starting from racemic tris(oxalato)metalate: rac-[M(III)(ox)3]3- (M(III) = Cr, Fe). For Cr(III), the synthesis has been undertaken starting from resolved (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. The natural circular dichroism measurements assess the enantioselectivity of the synthesis. X-Ray powder diffraction analysis has revealed that, when racemic reagents are used to synthesise Mn(II) containing compounds, a R3c achiral space group is found. In contrast a P6(3) chiral space group is found when starting from (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. Surprisingly, whatever the optical purity of the starting building block, all Fe(II) containing compounds crystallise in the P6(3) chiral space group. The magnetic properties of the synthesised compounds confirm that these compounds are ferromagnets for M(III)= Cr. For M(II)= Mn, Theta ranges between 9 and 11 K and T(c) equals 6 K. For M(II)= Fe, Theta ranges between 14 and 16 K and Tc between 11 and 12 K. [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][Mn(II)Fe(III)(ox)3] is an antiferromagnet with Theta = - 107 K and T(N) = 29 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号