首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and magnetic properties of three new members of a family of salicyaldoxime based [Mn6] single-molecule magnets possessing new structural types, core topologies and Mn oxidation state distributions are reported. The isostructural complexes [MnIII6O2(R-sao)6(X)2(EtOH)6] (R = Et, X = Br (1); R = Me, X = I (2)) exhibit single-molecule magnet behaviour with spin Hamiltonian parameters S = 12, g = 1.98 and D = -0.36 cm(-1) in both cases. The hexametallic cluster [MnIII4MnIV2O2(OMe)(4-)(Et-sao)6(MeOH)2].MeOH (3.MeOH) possesses a planar rod-like topology and a mixed valent [MnIV4MnIII2] core, which is unprecedented in this family of [Mn6] SMMs.  相似文献   

2.
Two new heptanuclear Mn clusters, [Mn7O5(OMe)2(O2CPh)9(terpy)] (1) and [Mn7O5(OCH2Ph)2(O2CPh)9(terpy)] (2), were prepared from the partial alcoholysis of the trinuclear complex [Mn3O(O2CPh)6(py)2(H2O)] (3) in the presence of terpy (terpy = 2,2':6',2' '-terpyridine). Complexes 1 and 2 crystallize in the triclinic P and the orthorhombic Pbca space groups, respectively. The clusters are both mixed valent, containing three Mn oxidation states: MnIV, 5MnIII, and MnII. The Mn ions are held together by nine doubly bridging benzoates, four mu3-O2- ions, one mu5-O2- ion, and either two mu-MeO- (1) or two mu-PhCH2O- (2) groups. The single terpy chelate in each complex is attached to the MnII ion. The core topology is novel and very unusual, comprising a cubane and a butterfly unit fused by sharing a MnIII and the mu5-O2- ion. Solid-state dc and ac magnetic susceptibility studies establish that complexes 1 and 2 both possess an S = 6 ground-state spin. Fits of variable-temperature and -field magnetization data gave S = 6, g = 1.88, and D = -0.21 cm-1 for 1 and S = 6, g = 1.86, and D = -0.18 cm-1 for 2. Single-crystal magnetization vs dc field scans down to 0.1 K for 2 show only very little hysteresis at 0.1 K.  相似文献   

3.
Ma YS  Song Y  Li YZ  Zheng LM 《Inorganic chemistry》2007,46(14):5459-5461
Two novel mixed-valent manganese phosphonate clusters [MnIIMnIII12O6(OH)6(O3PC6H11)10(py)6] (1) and [MnII4MnIII18O12(O3PC6H11)8(O2CCH3)22(H2O)6(py)2] (2) are reported in this paper. Complex 1 is the first carboxylate-free manganese phosphonate cluster. While compound 2 appears to be the largest manganese cluster thus far that contains phosphonate ligand. Both show slow magnetic relaxation behaviors.  相似文献   

4.
Two helical one-dimensional complexes [MnII(MeOH)4][MnIV(L·)2]·2MeOH (1) and [MnIII(salen)][MnIII(L)2] (2) (H2L = HON=C(Ph)N=NC6H4CO2H) contain the noninnocent ligand [Mn(L·)2]2- and innocent low-spin [Mn(L)2]-. Intrachain anti-ferromagnetic interaction between adjacent manganese ions via the syn-anti carboxylate bridges in complex 1. Alternate syn-anti and anti-anti carboxylate bridges have been found to transmit ferro- and antiferromagnetic coupling between high-spin and low-spin Mn(III) ions in complex 2.  相似文献   

5.
Zheng YZ  Xue W  Zhang WX  Tong ML  Chen XM 《Inorganic chemistry》2007,46(16):6437-6443
Two new mixed-valence manganese-carboxylate clusters, [MnIII9MnIV6(O2CPh)12(micro3-O)13(micro-O)4(micro-OMe)5(MeOH)4(H2O)5]2.1.5PhCO2H.MeOH.6H2O (1, PhCO2H = benzoic acid) and [MnIII9MnIV6(O2CCh)12(micro3-O)13(micro-O)4(micro-OMe)5(MeOH)3(H2O)6].0.5MeOH.2.5H2O (2, ChCO2H= cyclohexanecarboxylic acid) contain new disklike Mn15 cores. Both 1 and 2 can be synthesized by the conventional manganese redox reaction (MnO4- oxidizing Mn2+) in methanol solution. 2 can be also synthesized via the site-specific ligand substitution reaction from 1. 1 crystallizes in the triclinic space group P, whereas 2 crystallizes in the trigonal space group P. Magnetic study shows that both 1 and 2 have the same ground spin states ST = 2. Compared to the silence of the out-of-phase ac susceptibility of 1, 2 shows clearly slow magnetic relaxation behavior above 1.8 K due to the dramatically enhanced axial magnetic anisotropy (D = -0.89 and -1.58 cm-1 for 1 and 2, respectively, which was obtained by fitting the plots of M vs H/T with the program ANISOFIT 2.0).  相似文献   

6.
Structural, electrochemical, ESR, and H2O2 reactivity studies are reported for [Mn(dmptacn)Cl]ClO4 (1, dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) and binuclear complexes of bis(pentadentate) ligands, generated by attaching 2-pyridylmethyl arms to each secondary nitrogen in bis(1,4,7-triazacyclononane) macrocycles and linked by ethyl (tmpdtne, [Mn2(tmpdtne)Cl2](ClO4)2.2DMF, 2), propyl (tmpdtnp, [Mn2(tmpdtnp)Cl2](ClO4)2.3H2O, 3), butyl (tmpdtnb, [Mn2(tmpdtnb)Cl2](ClO4)2.DMF.2H2O, 4), m-xylyl (tmpdtn-m-X, [Mn2(tmpdtn-m-X)-Cl2](ClO4)2, 5) and 2-propanol (tmpdtnp-OH, [Mn2(tmpdtnp-OH)Cl2](ClO4)2, 6) groups. 1 crystallizes in the orthorhombic space group P2(1)2(1)2(1) (No. 19) with a = 7.959(7) A, b = 12.30(1) A, and c = 21.72(2) A; 2, in the monoclinic space group P2(1)/c (No. 14) with a = 11.455(4) A, b = 15.037(6) A, c = 15.887(4) A, and beta = 96.48(2) degrees; 3, in the monoclinic space group P2(1)/c (No. 14) with a = 13.334(2) A, b = 19.926(2) A, c = 18.799(1) A, and beta = 104.328(8) degrees; and [Mn2(tmpdtnb)Cl2](ClO4)2.4DMF.3H2O (4'), in the monoclinic space group P2(1)/n (No. 14) with a = 13.361(3) A, b = 16.807(5) A, c = 14.339(4) A, and beta = 111.14(2) degrees. Significant distortion of the Mn(II) geometry is evident from the angle subtended by the five-membered chelate (ca. 75 degrees) and the angles spanned by trans donor atoms (< 160 degrees). The Mn geometry is intermediate between octahedral and trigonal prismatic, and for complexes 2-4, there is a systematic increase in M...M distance with the length of the alkyl chain. Cyclic and square-wave voltammetric studies indicate that 1 undergoes a 1e- oxidation from Mn(II) to Mn(III) followed by a further oxidation to MnIV at a significantly more positive potential. The binuclear Mn(II) complexes 2-5 are oxidized to the Mn(III) state in two unresolved 1e- processes [MnII2-->MnIIMnIII-->MnIII2] and then to the MnIV state [MnIII2-->MnIIIMnIV-->MnIV2]. For 2, the second oxidation process was partially resolved into two 1e- oxidation processes under the conditions of square-wave voltammetry. In the case of 6, initial oxidation to the MnIII2 state occurs in two overlapping 1e- processes as was found for 2-5, but this complex then undergoes two further clearly separated 1e- oxidation processes to the MnIIIMnIV state at +0.89 V and the MnIV2 state at +1.33 V (vs Fc/Fc+). This behavior is attributed to formation of an alkoxo-bridged complex. Complexes 1-6 were found to catalyze the disproportionation of H2O2. Addition of H2O2 to 2 generated an oxo-bridged mixed-valent MnIIIMnIV intermediate with a characteristic 16-line ESR signal.  相似文献   

7.
A new class of oxo-bridged high-valent hexamanganese (Mn6) clusters containing a novel (Mn6O8)6+ core, [MnIV(4)MnIII2(mu-O)4(mu3-O)4(dmb)6(O2CR)2]4+ (where dmb=4,4'-dimethyl-2,2'-bipyridine, and RCO2=2,6-di(p-tolyl)benzoate (Ar(Tol)CO2-) (3) or 2,6-di(4-tert-butylphenyl)benzoate (Ar(4-tBuPh)CO2-) (4)), was synthesized using sterically hindered m-terphenyl-derived carboxylate ligands. These complexes can be synthesized by oxidizing the MnII mononuclear complexes, [Mn(dmb)2(OH2)(O2CR)]+ (where RCO2=Ar(Tol)CO2- (1) or Ar(4-tBuPh)CO2- (2)) with (n-Bu4N)MnO4, by direct Mn(II) + Mn(VII) in situ comproportionation reactions, or by ligand substitution on the dinuclear manganese (III,IV) or (IV,IV) complexes, [(Mn2(mu-O)2(dmb)4)](3+/4+). The compound [MnIV4MnIII2(mu-O)4(mu3-O)4(dmb)6(Ar(Tol)CO2)2](OTf)4 [3(OTf)4] crystallizes in the monoclinic space group P2(1)/n, with the cell parameters a=15.447(1) A, b=15.077(2) A, c=27.703(2) A, beta=91.68(2) degrees, V=6449.3(6) A3, and Z=2. The X-ray structure reveals that there are three different bridging modes for the oxo groups: mu, "pyramidal" mu3, and "T-shaped" mu3. Solid-state variable temperature magnetic susceptibility studies suggest that the Mn centers are net antiferromagnetically coupled to yield a diamagnetic ST=0 ground spin state with a large number of low-lying, thermally accessible states with ST>0. 1H NMR spectra were recorded for both Mn6 clusters and selected resonances assigned. The electronic and redox properties of these complexes along with the effect of the presence of the bulky carboxylate ligands are also described here.  相似文献   

8.
The use has been explored of both azide (N3-) and alkoxide-containing groups such as the anions of 2-(hydroxymethyl)pyridine (hmpH), 2,6-pyridinedimethanol (pdmH2), 1,1,1-tris(hydroxymethyl)ethane (thmeH3) and triethanolamine (teaH3) in Mn cluster chemistry. The 1:1:1:1 reactions of hmpH, NaN3 and NEt3 with Mn(ClO4)(2).6H 2O or Mn(NO3)2.H2O in MeCN/MeOH afford [MnII4MnIII6O4(N3)4(hmp)12](X)2 [X=ClO4- (1), N3- (2)]. The [Mn10(mu4-O) 4(mu3-N3)4]14+ core of the cation has a tetra-face-capped octahedral topology, with a central MnIII6 octahedron, whose eight faces are bridged by four mu 3-N3- and four mu 4-O2- ions, the latter also bridging to four extrinsic MnII atoms. The core has Td symmetry, but the complete [MnII4MnIII6O4(N3)4(hmp)12]2+ cation has rare T symmetry, which is crystallographically imposed. A similar reaction of Mn(ClO4) (2).6H2O with one equiv each of NaN3, thmeH3, pdmH2, and NEt3 in MeCN/MeOH led to [MnII4MnIII6O2(N3)6(pdmH)4(thme)4] (3). Complex 3 is at the same oxidation level as 1/2 but its core is structurally different, consisting of two edge-fused [MnII2MnIII4(mu4-O)]14+ octahedra. Replacement of thmeH3 with teaH3 in this reaction gave instead [MnII2MnIII2(N3)4(pdmH)2(teaH)2] (4), containing a planar Mn 4 rhombus. Variable-temperature, solid-state dc and ac magnetization studies were carried out on 1-4 in the 5.0-300 K range. Complexes 1 and 2 are completely ferromagnetically coupled with a resulting S=22 ground state, one of the highest yet reported. Fits of dc magnetization vs field (H) and temperature (T) data by matrix diagonalization gave S=22, g=2.00, and D approximately 0.0 cm(-1) (D is the axial zero-field splitting parameter). In contrast, the data for 3 revealed dominant antiferromagnetic interactions and a resulting S=0 ground state. Complex 4 contains weakly ferromagnetically coupled Mn atoms, leading to an S=9 ground-state and low-lying excited states, and exhibits out-of-phase ac susceptibility signals characteristic of a single-molecule magnet. Theoretical values of the exchange constants in 1 obtained with density functional theory and ZILSH calculations were in good agreement with experimental values. The combined work demonstrates the synthetic usefulness of alcohol-based chelates and azido ligands when used together, and the synthesis in the present work of two "isomeric" MnIII6MnII4 cores that differ in spin by a remarkable 22 units.  相似文献   

9.
Magnetically ordered Prussian blue analogues with the general formulation of M[Mn(CN)6] (M = V, Cr, Mn, Co, Ni) were made in aprotic media utilizing [MnIV(CN)6]2-. These analogs are valence-ambiguous, as they can be formulated as MII[MnIV(CN)6] or MIII[MnIII(CN)6]. The X-ray powder diffraction of each member of this family can be indexed to the face-centered cubic (fcc) Prussian blue structure type, with atypically reduced unit cell parameters (a approximately 9.25 +/- 0.25 A) with respect to hydrated Prussian blue structured materials (a > or = 10.1 A). The reduced a-values are attributed to a contraction of the lattice in the absence of water or coordinating solvent molecule (i.e., MeCN) that is necessary to help stabilize the structure during lattice formation. Based on vCN IR absorptions, X-ray photoelectron spectra, and magnetic data, the following oxidation state assignments are made: MII[MnIV(CN)6] (M = Co, Ni) and MIII[MnIII(CN)6] (M = V, Cr, Mn). Formation of MnIII[MnIII(CN)6] is in contrast to MnII[MnIV(CN)6] prepared from aqueous media. Above 250 K, the magnetic susceptibilities of M[Mn(CN)6] (M = V, Cr, Mn, Co, Ni) can be fit to the Curie-Weiss equation with theta = -370, -140, -105, -55, and -120 K, respectively, suggesting strong antiferromagnetic coupling. The room temperature effective moments, respectively, are 3.71, 4.62, 5.66, 4.54, and 4.91 microB, consistent with the above oxidation state assignments. All compounds do not exhibit magnetic saturation at 50 kOe, and exhibit frequency-dependent chi'(T) and chi"(T) responses characteristic of spin-glass-like behavior. M[Mn(CN)6] order as ferrimagnets, with Tc's taken from the peak in the 10 Hz chi'(T) data, of 19, 16, 27.1, < 1.75, and 4.8 K for M = V, Cr, Mn, Co, and Ni, respectively. The structural and magnetic disorder prevents NiII[MnIV(CN)6] from ordering as a ferromagnet as anticipated, and structural inhomogeneities allow CoII[MnIV(CN)6] and VIII[MnIII(CN)6] to unexpectedly order as ferrimagnets. Also, MnIII[MnIII(CN)6] behaves as a reentrant spin glass showing two transitions at 20 and 27.1 K, and similar behavior is evident for CrIII[MnIII(CN)6]. Hysteresis with coercive fields of 340, 130, 8, 9, and 220 Oe and remanent magnetizations of 40, 80, 1500, 4, and 250 emuOe/mol are observed for M = V, Cr, Mn, Co, and Ni, respectively.  相似文献   

10.
Controlled potential electrolysis (CPE) procedures are described that provide access to complexes with a [Mn4(mu 3-O)3(mu 3-O2CR)]6+ core (3MnIII,MnIV) and a trigonal pyramidal metal topology, starting from species containing the [Mn4(mu 3-O)2]8+ core (4MnIII). [Mn4O2(O2CMe)6(py)2(dbm)2] (6): triclinic, P1, a = 10.868(3) A, b = 13.864(3) A, c = 10.625(3) A, alpha = 108.62(1) degrees, beta = 118.98(1) degrees, gamma = 89.34(2) degrees, V = 1307 A3, Z = 1, T = -131 degrees C, R (Rw) = 3.24 (3.70)%. [Mn4O2(O2CPh)6(py)(dbm)2] (8): monoclinic, P2(1)/c, a = 14.743(6) A, b = 15.536(8) A, c = 30.006(13) A, beta = 102.79(1) degrees, V = 6702 A3, Z = 4, T = -155 degrees C, R (Rw) = 4.32 (4.44)%. Both 6 and 8 contain a [Mn4O2]8+ core; 8 only has one py group, the fourth MnIII site being five-coordinate. (NBun4)[Mn4O2(O2CPh)7(dbm)2] (10) is available from two related procedures. CPE of 10 at 0.65 V vs ferocene in MeCN leads to precipitation of [Mn4O3(O2CPh)4(dbm)3] (11); similarly, CPE of 6 at 0.84 V in MeCN/CH2Cl2 (3:1 v/v) gives [Mn4O3(O2CMe)4(dbm)3] (12). Complex 11: monoclinic, P2(1)/n, a = 15.161(3) A, b = 21.577(4) A, c = 22.683(5) A, beta = 108.04(3) degrees, V = 7056 A3, Z = 4, T = -100 degrees C, R (wR2) = 8.63 (21.80)%. Complex 12: monoclinic, P2(1)/n, a = 13.549(2) A, b = 22.338(4) A, c = 16.618(2) A, beta = 103.74(1) degrees, V = 4885 A3, Z = 4, T = -171 degrees C, R (Rw) = 4.63 (4.45)%. Both 11 and 12 contain a [Mn4(mu 3-O)3(mu-O2CR)] core with a Mn4 trigonal pyramid (MnIV at the apex) and the RCO2- bridging the MnIII3 base. However, in 11, the carboxylate is eta 2,mu 3 with one O atom terminal to one MnIII and the other O atom bridging the other two MnIII ions, whereas in 12 the carboxylate is eta 1,mu 3, a single O atom bridging three MnIII ions. Variable-temperature, solid-state magnetic susceptibility studies on 11 and 12 show that, for both complexes, there are antiferromagnetic exchange interactions between MnIII/MnIV pairs, and ferromagnetic interactions between MnIII/MnIII pairs. In both cases, the resultant ground states of the complex is S = 9/2, confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.50-50 kG temperature and field ranges, respectively.  相似文献   

11.
以N-乙基-3-吲哚三氟甲基β-二酮(EIFD)为主配体,分别以乙二醇单甲醚(EM)、乙二醇二甲醚(EDM)、二缩三乙二醇(TEG)为辅助配体,与DyCl3·6H2O反应合成了一系列Dy(Ⅲ)配合物[Dy(EIFD)3(EM)]·CH2Cl2(1)、[Dy(EIFD)3(EDM)]·CH2Cl2(2)和[Dy(EIFD)3(TEG)](3)。X射线单晶衍射分析表明,3个配合物都是八配位的单核结构,配位构型分别为双帽三棱柱、正十二面体和双帽三棱柱,分别具有C2v、D2d和C2v对称性。磁学性质显示了配合物1~3具有慢弛豫现象,能垒分别为95.1 K (1)、40.5 K (2)、53.8和13.4 K (3),且配合物1和3有明显的蝴蝶状磁滞回线。进一步讨论了配合物中Dy-O键长和含氧辅助配体的电子效应对配合物有效翻转能垒的影响。  相似文献   

12.
The carboxylic acid promoted cis-dihydroxylation and epoxidation of alkenes catalyzed by [MnIV2O3(tmtacn)2]2+ 1 employing H2O2 as oxidant is described. The use of carboxylic acids at cocatalytic levels not only is effective in suppressing the inherent catalase activity of 1, but also enables the tuning of the catalyst's selectivity. Spectroscopic studies and X-ray analysis confirm that the control arises from the in situ formation of carboxylate-bridged dinuclear complexes, for example, 2 {[MnIII2O(CCl3CO2)2(tmtacn)2]2+} and 3 {[MnII2(OH)(CCl3CO2)2(tmtacn)2]+}, during catalysis. For the first time, the possibility to tune, through the carboxylate ligands employed, both the selectivity and activity of dinuclear Mn-based catalysts is demonstrated. To our knowledge, the system 1/2,6-dichlorobenzoic acid (up to 2000 turnover numbers for cis-cyclooctanediol) is the most active Os-free cis-dihydroxylation catalyst reported to date.  相似文献   

13.
A series of new diiron azadithiolate (ADT) complexes (1-8), which could be regarded as the active site models of [FeFe]hydrogenases, have been synthesized starting from parent complex [(μ-SCH(2))(2)NCH(2)CH(2)OH]Fe(2)(CO)(6) (A). Treatment of A with ethyl malonyl chloride or malonyl dichloride in the presence of pyridine afforded the malonyl-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(6) (1) and [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (2). Further treatment of 1 and 2 with PPh(3) under different conditions produced the PPh(3)-substituted complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (3), [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(4)(PPh(3))(2) (4), and [Fe(2)(CO)(5)(PPh(3))(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (5). More interestingly, complexes 1-3 could react with C(60) in the presence of CBr(4) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) via Bingel-Hirsch reaction to give the C(60)-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(6) (6), [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)C(C(60)) (7), and [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (8). The new ADT-type models 1-8 were characterized by elemental analysis and spectroscopy, whereas 2-4 were further studied by X-ray crystallography and 6-8 investigated in detail by DFT methods.  相似文献   

14.
Reaction of MnCl2 with a non-innocent ligand H3L results in an unprecedented mixed-valence trinuclear complex [MnII MnIII MnIV (L)(L*)2(L(IQ))Cl] whose structural and magnetic properties are described.  相似文献   

15.
Tantalum complexes [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NMe(2))=CH)py}] (4) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NH(2))=CH)py}] (5), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ(3)-N,O,O-(OCH(2))(OCH)py}] (Cp* = η(5)-C(5)Me(5)) with HC≡CCH(2)NMe(2) and HC≡CCH(2)NH(2), respectively. The reactions of [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(Ph)=CH)py}] (2) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(SiMe(3))=CH)py}] (3) with triflic acid (1:2 molar ratio) rendered the corresponding bis-triflate derivatives [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(Ph)=CH(2))py}] (6) and [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(SiMe(3))=CH(2))py}] (7), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water-soluble cationic complex [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH)py}]OTf (8). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H(2)O){κ(3)-N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH(2))py}](OTf)(2) (9). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH)py}](OTf)(2) (10), which afforded the corresponding protonolysis derivative [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH(2))py}](OTf) (11) in solution. Complex 8 reacted with CNtBu and potassium 2-isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13, respectively. The molecular structures of complexes 5, 7, and 10 were established by single-crystal X-ray diffraction studies.  相似文献   

16.
A series of compounds (cat)[V6O6(OCH3)8(calix)(CH3OH)] was obtained under anaerobic conditions and solvothermal reaction of VOSO4 with p-tert-butylcalix[4]arene (calix) in methanol using different types of bases (Et4NOH, NH4OH, pyridine, Et3N). All compounds contain the same polyoxo(alkoxo)hexavanadate anion [V6O6(OCH3)8(calix)(CH3OH)]- (1) exhibiting a mixed valence {VIIIVIV5O19} core with the so-called Lindqvist structure coordinated to a calix[4]arene macrocycle and cocrystallizing with the conjugated acid of the base (cat = Et4N+, NH4(+), pyridinium, Et3NH+) involved in the synthesis process. The structures have been fully established from X-ray diffraction on single crystals and the mixed valence state has been confirmed by bond valence sum calculations. The magnetic behavior of all compounds are the same because of the polyalkoxohexavanadate anion [V6O6(OCH3)8(calix)(CH3OH)]- (1) and have been interpreted by DFT calculations. Thus the V(III)...V(IV) interactions are found to be weakly ferromagnetic (<5.5 cm(-1)) while the V(IV)...V(IV) are antiferromagnetic (-17.6; -67.6 cm(-1)). The set of the coupling exchange parameters allows a good agreement with the magnetic experimental data.  相似文献   

17.
Addition of [Mo(V)2O2S2(edt)2]2- (edt =1,2-ethanedithiolate) to acetonitrile and/or methanol solutions of MnII containing bipyridines [4,4'-trimethylenedipyridine (TDP), 4,4'-bipyridine (4,4'-bpy), 2,2'-bipyridine (2,2'-bpy)] or 15-crown-5 produces three new heterometallic cluster coordination polymers, [Mn2[Mo2O2S2(edt)2]2(TDP)3(CH3OH)2(NCMe)2].3CH3OH.0.25MeCN (1), [Mn(TDP)2(H2O)2]2+[Mn[Mo2O2S2(edt)2)2(TDP)2]]2-.6CH3OH (2), [Mn[Mo2O2S2(edt)2](TDP)2(CH3OH)(H2O)].CH3OH (3), and three new multinuclear clusters, [Mn[Mo2O2S2(edt)2](4,4'-bpy)(CH3OH)4].0.5(4,4'-bpy) (4), [Mn[Mo2O2S2(edt)2](2,2'-bpy)2].2CH3OH (5), and (NEt4)2[Mn(15-crown-5)[Mo2O2S2(edt)2]2] (6). All compounds were characterized by X-ray crystallography. The coordination mode of Mn in these compounds depends on the ligands and the crystallization conditions. Compound 2 readily converts to 1 or 3 depending on the reaction and solvent conditions. Compounds 1 and 2 were analyzed using thermogravimetric analysis combined with mass spectroscopy (TG-MS) in the temperature range 25-500 degrees C. The room-temperature magnetic moments for compounds 1-6 were determined.  相似文献   

18.
The structural characterization of complexes [Mn(II)4Mn(III)22(pdol)12(OCH3)12(O)16(N3)6] (1) and [Mn(II)4Mn(III)22(pdol)12(OCH3)12(O)16(OH)2(H3O)(OCH3)3].ClO4.5CH3OH (2), where pdol(2-) is di-2-pyridyl methanediol, reveals that each has a metallacryptand shell that encapsulates a manganese oxide core. Variable-temperature direct current magnetic susceptibility measurements on 2 indicate a paramagnetic ground state that results from an overall antiferromagnetic interaction in the cluster, with chiT values decreasing from 300 K (51.2 cm3 K mol(-1)) to 2 K (19.8 cm3 K mol(-1)). Variable-temperature alternating current magnetic susceptibility measurements imply that both 1 and 2 behave as single-molecule magnets. Fitting the frequency-dependent out-of-phase magnetic susceptibility to the Arrhenius equation yields an effective energy barrier, Ueff, to magnetization relaxation of 16.5 +/- 0.7 K (11.5 +/- 0.5 cm(-1)) for 1 and 36.2 +/- 2.0 K (25.1 +/- 1.4 cm(-1)) for 2. The larger value for 2 is in agreement with the lower molecular symmetry, larger magnetoanisotropy, and higher ground spin state of 2 compared to those of 1. This observation suggests a new strategy for increasing the blocking temperatures in high-nuclearity manganese clusters.  相似文献   

19.
杂元素冠醚研究 Ⅶ.多硒杂冠醚及其钯配合物的合成   总被引:2,自引:0,他引:2  
李卫平  刘秀芳  徐汉生 《化学学报》1994,52(11):1082-1087
在碱性条件下,1,2-二硒杂环戊烷被硼氢化钠还原成双硒负离子,然后和二醇的二对甲苯磺酸酯或二氯化物缩合成环,得到六个二硒杂冠醚(2a,3a,4a,5a,6a,7a)和七个四硒杂冠醚(2b,3b,4b,5b,6b,7b,8b).同时,通过5a,5b与二氯化钯反应,合成了两个钯配合物,并讨论了其配位特征  相似文献   

20.
[MnIV3(micro-O)4(phen)4(H2O)2]4+ (, phen=1,10-phenanthroline) equilibrates with its conjugate base [Mn3(micro-O)4(phen)4(H2O)(OH)]3+ in aqueous solution. Among the several synthetic multinuclear oxo- and/or carboxylato bridged manganese complexes known to date containing metal-bound water, to the best of our knowledge, only deprotonates (right harpoon over left harpoon+H+, pKa=4.00 (+/-0.15) at 25.0 degrees C, I=1.0 M, maintained with NaNO3) at physiological pH. An aqueous solution of quantitatively oxidises NIII (HNO2 and NO2-) to NO3- within pH 2.3-4.1, the end manganese state being MnII. Both and are reactive oxidants in the title redox. In contrast to a common observation that anions react quicker than their conjugate acids in reducing metal centred oxidants, HNO2 reacts faster than NO2- in reducing or . The observed rates of nitrite oxidation do not depend on the variation of 1,10-phenanthroline content of the solution indicating that the MnIV-bound phen ligands do not dissociate in solution under experimental conditions. Also, there was no kinetic evidence for any kind of pre-equilibrium replacement of MnIV-bound water by nitrite prior to electron transfer which indicates the substitution-inert nature of the MnIV-bound waters and the 1,10-phenanthroline ligands. The MnIV3 to MnII transition in the present observation proceeds through the intermediate generation of the spectrally characterised mixed-valent MnIIIMnIV dimer that quickly produces MnII. The reaction rates are substantially lowered when solvent H2O is replaced by D2O and a rate determining 1e, 1H+ electroprotic mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号