首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phenylgallium-containing clusters constructed with bridging imido and amido ligands, (PhGa)(4)(NH(i)Bu)(4)(N(i)Bu)(2) (1) (51% yield) and (PhGa)(7)(NHMe)(4)(NMe)(5) (2) (31% yield), were synthesized from the room-temperature reactions of bis(dimethylamido)phenylgallium, [PhGa(NMe(2))(2)](2), with isobutylamine and methylamine, respectively. The reaction of [PhGa(NMe(2))(2)](2) in refluxing isobutylamine (85 degrees C) afforded (Ph(2)GaNH(i)Bu)(2) as one of the products, while the reaction of [PhGa(NMe(2))(2)](2) with methylamine at 150 degrees C afforded compound 2 in only 9% yield. Compound 1 possessed an admantane-like Ga(4)N(6) core, whereas compound 2 had a novel Ga(7)N(9) core constructed with both chair- and boat-shaped Ga(3)N(3) rings. The presence of several isomers of compounds 1 and 2 in solution is discussed along the structural similarities with other known gallium-nitrogen clusters and with gallium nitride.  相似文献   

2.
3.
4.
The reaction of the anticancer active compound [Rh(2)(mu-O(2)CCH(3))(2)(bpy)(2)(CH(3)CN)(2)][BF(4)](2) (1) (bpy = 2,2'-bipyridine) with NaC(6)H(5)S under anaerobic conditions yields Rh(2)(eta(1)-C(6)H(5)S)(2)(mu-C(6)H(5)S)(2)(bpy)(2).CH(3)OH (2), which was characterized by UV-visible, IR, and (1)H NMR spectroscopies as well as single-crystal X-ray crystallography. Compound 2 crystallizes as dark red platelets in the monoclinic space group C2/c with cell parameters a = 20.398(4) A, b = 11.861(2) A, c = 17.417(4) A, beta = 108.98 degrees, V = 3984.9(14) A(3), Z = 4. The main structural features are the presence of a [Rh(2)](4+) core with a Rh-Rh distance of 2.549(2) A bridged by two benzene thiolate ligands in a butterfly-type arrangement. The axial positions of the [Rh(2)](4+) core are occupied by two terminal benzene thiolates. Cyclic voltammetric studies of 2 reveal that the compound exhibits an irreversible oxidation at +0.046 V in CH(3)CN, which is in accord with the fact that the compound readily oxidizes in the presence of O(2). The fact that this unusual dirhodium(II/II) thiolate compound is formed under these conditions is an important first step in understanding the metabolism of dirhodium anticancer active compounds with thiol-containing peptides and proteins.  相似文献   

5.
This study addresses, in detail, the orbital nature and the extent of metal-metal communication in the lowest emitting triplet state of Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) (where 4,4'-bpy = 4,4'-bipyridine) as well as the symmetry of the lowest (3)MLCT manifold in comparison to that of the ground state. All spectral evidence points to (1). a (3)MLCT excited manifold localized between a single Re(I) corner and an adjacent bridging ligand, (2). a transient mixed-valence state that is completely localized between a single transiently oxidized Re center and the adjacent metals, and (3). a second-order charge transfer from a localized transiently reduced bridging ligand to the adjacent Re(I) center to which it is attached, effectively lowering its oxidation state. The orbital nature of the lowest (3)MLCT manifold is fully corroborated by a molecular orbital diagram derived from quantum chemical modeling studies, while the existence of the localization, localized mixed valency, and second-order charge transfer rely on spectral evidence alone. This work makes use of low-temperature time-resolved infrared (TRIR) techniques as well as a luminescence study. Many of the nuances of the luminescence and TRIR data interpretation are extracted from statistical analysis and quantum chemical modeling studies. The relative concentrations of the dominant conformers that exist for Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) have also been estimated from Boltzmann statistics.  相似文献   

6.
7.
8.
The pillaring of Mg(3)Al layered double hydroxides (LDHs) by the title polyoxometalates (POMs) was accomplished by ion exchange reaction of the LDH-hydroxide and -adipate precursors with the POM anion at ambient or refluxing temperatures. The structural, thermal and textural properties of the LDH-POM intercalates were elucidated based on XRD, FTIR, TEM, EDS, and N(2) adsorption-desorption studies. A gallery height of approximately 10 ? was observed for the LDH intercalated by the symmetrical Keggin POM, whereas two different gallery heights were found for the cylindrical Dawson (14.5 and 12.8 ?) and Finke (13.3 and 12.6 ?) anions, depending on the preparation temperature. The differences in POM orientations were rationalized in terms of different electrostatic and hydrogen-bonding interactions between the POM pillars and the LDH layers. Upon thermal treatment at >/=100 degrees C, the intercalated Dawson and Finke POM ions exhibited only one gallery orientation, regardless of synthesis conditions. The crystalline microporous structures were retained upon heating each LDH-POM intercalate in N(2) to 200 degrees C. Pillaring in all cases was accompanied by the formation of a poorly ordered Mg(2+)/Al(3+) salt impurity that formed on the external surfaces of the LDH crystals.  相似文献   

9.
Two longitudinal superlattice structures of In(2)O(3)(ZnO)(4) and In(2)O(3)(ZnO)(5) nanowires were exclusively produced by a thermal evaporation method. The diameter is periodically modulated in the range of 50-90 nm. The nanowires consist of one In-O layer and five (or six) layered Zn-O slabs stacked alternately perpendicular to the long axis, with a modulation period of 1.65 (or 1.9) nm. These superlattice nanowires were doped with 6-8% Sn. The X-ray diffraction pattern reveals the structural defects of wurtzite ZnO crystals due to the In/Sn incorporation. The high-resolution X-ray photoelectron spectrum suggests that In and Sn withdraw the electrons from Zn and enhance the number of dangling-bond O 2p states, resulting in the reduction of the band gap. Photoluminescence and cathodoluminescence exhibit the peak shift of near band edge emission to the lower energy and the enhancement of green emission as the In/Sn content increases.  相似文献   

10.
Two new copper 2-pyrazinecarboxylate (2-pzc) coordination polymers incorporating [Mo(8)O(26)](4-) and [V(10)O(28)H(4)](2-) anions were synthesized and structurally characterized: Cu(4)(2-pzc)(4))(H(2)O)(8)(Mo(8)O(26)).2H(2)O (1) and Cu(3)(2-pzc)(4)(H(2)O)(2)(V(10)O(28)H(4)).6.5H(2)O (2). Crystal data: 1, monoclinic, space group P2(1)/n, a = 11.1547(5) A, b = 13.4149(6) A, c = 15.9633(7) A, beta = 90.816(1) degrees; 2, triclinic, space group P1, a = 10.5896(10) A, b = 10.7921(10) A, c = 13.5168(13) A, alpha = 104.689(2) degrees, beta = 99.103(2) degrees, gamma = 113.419(2) degrees. Compound 1 contains [Cu(2-pzc)(H(2)O)(2)] chains charge-balanced by [Mo(8)O(26)](4-) anions. In compound 2, layers of [Cu(3)(2-pzc)(4)(H(2)O)(2)] form cavities that are filled with [V(10)O(28)H(4)](2-) anions. The magnetic properties of both compounds are described.  相似文献   

11.
The reaction of [Sn(NMe(2))(2)](2) (1) with 4 equiv of HOCH(2)CMe(3) (HONep) leads to the isolation of [Sn(ONep)(2)](infinity) (2). Each Sn atom is four coordinated with mu-ONep ligands bridging the metal centers; however, if the free electrons of the Sn(II) metal center are considered, each Sn center adopts a distorted trigonal bipyramidal (TBP) geometry. Through (119)Sn NMR experiments, the polymeric compound 2 was found to be disrupted into smaller oligomers in solution. Titration of 2 with H(2)O led to the identification of two unique hydrolysis products characterized by single-crystal X-ray diffraction as Sn(5)(mu(3)-O)(2)(mu-ONep)(6) (3) and Sn(6)(mu(3)-O)(4)(mu-ONep)(4) (4). Compound 3 consists of an asymmetrical molecule that has five Sn atoms arranged in a square-based pyramidal geometry linked by four basal mu-ONep ligands, two facial mu(3)-O, and two facial mu-ONep ligands. Compound 4 was solved in a novel octahedral arrangement of six Sn cations with an asymmetric arrangement of mu(3)-O and mu-ONep ligands that yields two square base pyramidal and four pyramidal coordinated Sn cations. These compounds were further identified by multinuclear ((1)H, (13)C, (17)O, and (119)Sn) solid-state MAS and high resolution, solution NMR experiments. Because of the complexity of the compounds and the accessibility of the various nuclei, 2D NMR experiments were also undertaken to elucidate the solution behavior of these compounds. On the basis of these studies, it was determined that while the central core of the solid-state structures of 3 and 4 is retained, dynamic ligand exchange leads to more symmetrical molecules in solution. Novel products 3 and 4 lend structural insight into the stepwise hydrolysis of Sn(II) alkoxides.  相似文献   

12.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

13.
Dong ZC  Corbett JD 《Inorganic chemistry》1996,35(11):3107-3112
Reaction of the neat elements in tantalum containers at 400 degrees C and then 150 degrees C gives the pure title phase. X-ray crystallography shows that the hexagonal structure (P6(3)/mmc, Z = 2, a = 11.235(1) ?, b = 30.133(5) ?) contains relatively high symmetry clusters Tl(5)(7)(-) (D(3)(h)()), Tl(4)(8)(-) (C(3)(v)(), approximately T(d)), and the new Tl(3)(7)(-) (D(infinity)(h)()) plus Tl(5)(-), the last two disordered over the same elongated site in 1:2 proportions. Cation solvation of these anions is tight and specific, providing good Coulombic trapping of weakly bound electrons on the isolated cluster anions. The observed disorder makes the compound structurally a Zintl phase with a closed shell electron count. EHMO calculations on the novel Tl(3)(7)(-) reveal some bonding similarities with the isoelectronic CO(2), with two good sigma(s,p) bonding and two weakly bonding pi MO's. The Tl-Tl bond lengths therein (3.14 ?) are evidently consistent with multiple bonding. The weak temperature-independent paramagnetism and metallic conductivity (rho(293) approximately 90 &mgr;Omega.cm) of the phase are discussed.  相似文献   

14.
(Cyclopentadienyl)(1-methylallyl)(butadiene)titanium, C13H18Ti, has been obtained from the reaction between (C5H5)TiCl3 or (C5H5)TiCl2 and 1-methylallylmagnesium bromide in ether. The brown compound is diamagnetic and thermally stable, but very sensitive to oxygen. The nature of the new compound has been elucidated from its reaction with bromine and by IR, 1H and 13C NMR, and mass spectral analysis.  相似文献   

15.
16.
17.
Condensation of cyanometalates and cluster building blocks leads to the formation of hybrid molecular cyanometalate cages. Specifically, the reaction of [Cs subset [CpCo(CN)(3)](4)[CpRu](3)] and [(cymene)(2)Ru(3)S(2)(NCMe)(3)]PF(6) produced [Cs subset [CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)][CpRu](3)](PF(6))(2), Cs subset Co(4)Ru(6)S(2)(2+). Single-crystal X-ray diffraction, NMR spectroscopy, and ESI-MS measurements show that Cs subset Co(4)Ru(6)S(2)(2+ ) consists of a Ru(4)Co(4)(CN)(12) box fused with a Ru(3)S(2) cluster via a common Ru atom. The reaction of PPN[CpCo(CN)(3)] and 0.75 equiv of [(cymene)(2)(MeCN)(3)Ru(3)S(2)](PF(6))(2) in MeCN solution produced [[CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)](3)](PF(6))(2), Co(4)Ru(9)S(6)(2+). Crystallographic analysis, together with NMR and ESI-MS measurements, shows that Co(4)Ru(9)S(6)(2+ ) consists of a Ru(3)Co(4)(CN)(9) "defect box" core, wherein each Ru is fused to a Ru(3)S(2) clusters. The analogous condensation using [CpRh(CN)(3)](-) in place of [CpCo(CN)(3)](-) produced the related cluster-cage Rh(4)Ru(9)S(6)(2+). Electrochemical analyses of both Co(4)Ru(9)S(6)(2+) and Rh(4)Ru(9)S(6)(2+) can be rationalized in the context of reduction at the cluster and the Co(III) subunits, the latter being affected by the presence of alkali metal cations.  相似文献   

18.
19.
The reaction of anhydrous YCl3 with an equimolar amount of lithium N,N'-diisopropyl-N' '-bis(trimethylsilyl)guanidinate, Li[(Me3Si)2NC(Ni-Pr)2], in tetrahydrofuran (THF) afforded the monomeric monoguanidinate dichloro complex {(Me3Si)2NC(Ni-Pr)2}YCl2(THF)2 (1). Alkylation of complex 1 with 2 equiv of LiCH2SiMe3 in hexane at 0 degrees C yielded the monomeric salt-free dialkyl complex {(Me3Si)2NC(Ni-Pr)2}Y(CH2SiMe3)2(THF)2 (2). The bis(triethylborohydride) complex [(Me3Si)2NC(Ni-Pr)2]Y[(mu-H)(mu-Et)2BEt]2(THF) (5) was prepared by the reaction of complex 1 with 2 equiv of LiBEt3H in a toluene-THF mixture at 0 degrees C. The complexes 1, 2, and 5 were structurally characterized. Complex 2 as well as the systems 2-Ph3B, 2-Ph3B-MAO, and 1-MAO (MAO = methylaluminoxanes) in toluene were inactive in ethylene polymerization, while the product obtained in situ from the reaction of complex 2 with a 2-fold molar excess of PhSiH3 in toluene polymerized ethylene with moderate activity.  相似文献   

20.
Oxidative addition of the sulfur-sulfur bond of 2,2'-pyridine disulfide (C(5)H(4)NS-SC(5)H(4)N) with L(3)W(CO)(3) [L = pyridine, (1)/(3)CHPT; CHPT = cycloheptatriene] in methylene chloride solution yields the seven-coordinate W(II) thiolate complex W(eta(2)-mp)(2)(CO)(3) (mp = monoanion of 2-mercaptopyridine). This complex undergoes slow further oxidative addition with additional pyridine disulfide, yielding W(eta(2)- mp)(4). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO results in quantitative formation of the six-coordinate W(0) complex W(eta(2)-mp)(2)(NO)(2). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO in the presence of added pyridine disulfide yields the seven-coordinate W(II) nitrosyl complex W(eta(2)-mp)(3)(NO) as well as W(eta(2)-mp)(2)(NO)(2) and trace amounts of W(eta(2)-mp)(4). The complex W(eta(2)-mp)(3)(NO) is formed during the course of the reaction and not by reaction of W(eta(2)-mp)(4) or W(eta(2)-mp)(2)(NO)(2) with NO under these conditions. The crystal structures of W(eta(2)- mp)(2)(CO)(3), W(eta(2)-mp)(2)(NO)(2), and W(eta(2)-mp)(3)(NO) are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号