首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One hundred and sixty-one undergraduate elementary education majors and sixty elementary teachers completed an eight-item questionnaire designed to assess their perceptions toward integrating science and mathematics in the elementary grades. The two groups of subjects differed significantly on their responses to five of the eight items. Chi square analyses suggest that practicing elementary teachers felt they had more background in mathematics and science, were more aware of curriculum materials in this area, did not think that integration was currently a common practice, and were more likely to indicate that there was not sufficient time in the school day to integrate the subjects. Preservice teachers were more likely to indicate that integrating the disciplines was preferred to teaching them separately. In addition to the analyses of data, a list of recommendations are provided for teachers, curriculum developers, and policy makers interested in advancing the concept of integrating science and mathematics in instruction.  相似文献   

2.
An inservice program designed to enhance the knowledge and skills of elementary school teachers with respect to science content, effective teaching strategies, and gender equity was implemented as a semester-long course. During the course, teachers explored new science content in chemistry and physics and then collaboratively developed lesson plans from it based on hands-on, discovery-centered learning, enmeshed in strategies that could maximize female student interest and participation in science. Teachers tried out their lessons between course sessions in their own classrooms and then collaboratively reflected on their progress and problems in subsequent sessions. Program results were positive for both teachers and students. Teachers reported significant increases in both their level of knowledge of and their confidence in teaching chemistry and physics concepts, as well as in their knowledge of strategies for addressing gender inequities. Project students' attitudes, particularly those of the girls, improved for some dimensions, remained stable for others, and declined for one; the girls also increased their level of active participation in science activities. Overall, the project seems to have had a positive impact on science teaching content and pedagogy, and on student (especially girls') interest and active participation in science.  相似文献   

3.
This study focused on the mathematics backgrounds of 45 elementary mathematics teachers. A survey was administered which asked teachers to reflect on their elementary, secondary, and college mathematics experiences, the support they received and the confidence they have with their ability to teach elementary mathematics. Quantitative and qualitative data derived from the survey, revealed that sharing mathematics knowledge in elementary school; committed, enthusiastic teachers in high school; parental support; and practical uses of mathematics were positive influences for these teachers. Rote drill, seatwork, and ability grouping were negative influences. The majority of the teachers felt inservice staff development experiences helped make them confident teachers of elementary mathematics. The implications of the study for mathematics education are discussed.  相似文献   

4.
Nineteen elementary and 5 middle school in-service teachers served as regional lead teachers to provide 13 two- and four-day workshops for 235 in-service teachers. The lead teachers attended 100 hours of inservice training on national science/math reform curricula, cognitive theory, pedagogical strategies for enhancing problem solving, and authentic assessment procedures. The lead teachers then selected $30,000 worth of instructional materials for use in their classrooms. Subsequently, they developed four hands-on-manipulative-based workshops through extensive use of video-teleconferencing technology. The lead teachers strongly believe that this extensive project has made a permanent positive impact on the quality and quantity of integrated science and math instruction in Kansas.  相似文献   

5.
STEM education in elementary school is guided by the understanding that engineering represents the application of science and math concepts to make life better for people. The Engineering Design Process (EDP) guides the application of creative solutions to problems. Helping teachers understand how to apply the EDP to create lessons develops a classroom where students are engaged in solving real world problems by applying the concepts they learn about science and mathematics. This article outlines a framework for developing such lessons and units, and discusses the underlying theory of systems thinking. A model lesson that uses this framework is discussed. Misconceptions regarding the EDP that children have displayed through this lesson and other design challenge lessons are highlighted. Through understanding these misconceptions, teachers can do a better job of helping students understand the system of ideas that helps engineers attack problems in the real world. Getting children ready for the 21st century requires a different outlook. Children need to tackle problems with a plan and not shrivel when at first, they fail. Seeing themselves as engineers will help more underrepresented students see engineering and other STEM fields as viable career options, which is our ultimate goal.  相似文献   

6.
Berinderjeet Kaur 《ZDM》2011,43(6-7):791-803
Enhancing the pedagogy of mathematics teachers (EPMT) project is a hybrid model of professional development (PD) that reflects a gradual shift in the centre of gravity away from the University-based, “supply-side”, “off-line” forms of knowledge production conducted by university scholars for teachers towards an emergent school-based, demand-side, on-line, in situ forms of knowledge production conducted by teachers with support from university scholars. The aims of the EPMT project were threefold: to provide teachers with training, to facilitate teachers’ work (practice and feedback) at the school level and to enthuse and support teachers to contribute towards the development of fellow teachers. This paper examines two project participants’ infusion of their learning in classroom practice. From the lessons enacted by the two teachers it was apparent that both teachers were able to apply their learning in their lessons. The teachers also manifested changes in their perception of teaching mathematics.  相似文献   

7.
The GTECH project, funded through a grant from the GTE Foundation, prepared school teams of science, mathematics and technology teachers and an administrator to set goals for their local schools regarding implementation of electronic technology and integration of content across curricular areas. A variety of teacher‐centered staff development strategies were used to enable participants to achieve local school objectives, model and encourage active learning environments involving technology, develop integrated curriculum and provide training to their peers. GTECH staff provided workshops and summer institutes based on teacher feedback and classroom observations. Data from the Stages of Concerns Questionnaire assisted the staff in designing effective staff development activities. Over the 2‐year period, teacher teams developed and implemented integrated instructional materials and developed skills in using HyperStudio, PowerPoint, telecommunications applications, and instructional resources from the Internet. They also linked instruction to new state and national standards in science, mathematics, and technology. GTECH teachers reported that their students have expanded their knowledge and skill in problem solving, teamwork, technical expertise, and creativity.  相似文献   

8.
This article focuses on presenting success factors for a group of teachers in carrying out a learning study in mathematics at their school. The research questions are: what are the actions of the school teaching community during development projects? What factors enable a group of teachers to carry out a learning study at their school? Activity theory provides a holistic framework to investigate relationships among the components present in a learning study. The results are based on analysis of interviews with teachers, students, principal organizers of schools and project coordinators, videotaped lessons, students’ tests and minutes taken at meetings of mathematics projects. The results show that the skills of facilitators, the time devoted to collaborative work, the link to learning theory and avoiding overly comprehensive content when teaching lessons are important promoting factors in mathematics teaching. The findings raise important questions about the way in which teacher work within universities.  相似文献   

9.
In our study, we use a novel technique to explore the beliefs of Japanese and American elementary school teachers. Four American and four Japanese teachers watched a mathematics lesson—videotaped in either Nagano, Japan or Chicago, Illinois—and commented on the lesson's strengths and weaknesses. The major pedagogical issues that differentiated the teachers' comments were: what students should do during a lesson, how instructors should use language, how instructors should pace lessons and address ability differences, and how instructional materials should be used. The specific beliefs of the American and Japanese teachers in this study mapped easily onto common instructional practices in elementary school mathematics classes in the United States and Japan. We conclude that, at least for the teachers in this sample, beliefs are linked to practices and they may help to tie teachers to their culturally preferred method of mathematics instruction.  相似文献   

10.
The purpose of this research was to explore the experiences preservice elementary teachers have had with science fairs, to examine the attitudes resulting from their participation in science fairs as students, and to assess the importance of these past histories for their future students. Preservice teachers were asked what they liked, disliked, and what they considered to be the benefits of science fairs. While most felt that science fairs are beneficial activities for students, those who rated science fairs as most worthwhile had never participated in a science fair as either an elementary or a secondary student. Based on the results of the study, several recommendation were made to improve science fair experiences both for teachers and for students.  相似文献   

11.
Thirty-five research scientists from the academic areas of Chemistry, Geology, Physics and Zoology were surveyed to obtain information regarding the effect of teachers and formal schooling on their decisions to become scientists. All subjects included in the study held the PhD. degree and were actively involved in research. Data analysis indicated that 63 percent of the subjects had identified a genuine interest in science by the time they were in the ninth grade, but only 9 percent of them attributed this interest to their elementary or junior high school teachers. The data revealed that 43 percent of the population were influenced to become scientists by one or more high school teachers. Also, one-third of the subjects had made the decision to become a scientist by the time of high school graduation. Most of the other two-thirds of the individuals studied decided to become scientists because of the influence of college professors in their freshman-and sophomore-level courses. The subjects were asked if particular events that occurred in junior or senior high school science classes positively influenced them to become scientists. Seventy-eight percent of the subjects responded that there were no classroom activities occurring that attracted them to science.  相似文献   

12.
This study examines inservice elementary school teachers' beliefs, attitudes, and practical knowledge toward inquiry‐based science instruction and the influence of an inquiry‐based elementary science course on teachers' beliefs, attitudes, and practical knowledge regarding inquiry. Both surveys and a case study were administered to the 14 elementary school teachers before and after completing a three‐credit elementary science methods course that was inquiry‐based. The findings showed that the teachers' beliefs, attitudes, and practical knowledge about inquiry were clearly influenced by the course. Through this course, the teachers developed fairly positive beliefs and attitudes that promoted inquiry instruction. The majority of participants also improved their knowledge and skills of conducting inquiry as they successfully practiced inquiry‐instruction in their science teachings.  相似文献   

13.
14.
Allan Graham Duncan 《ZDM》2010,42(7):763-774
Do teachers find that the use of dynamically linked multiple representations enhances their students’ relational understanding of the mathematics involved in their lessons and what evidence do they provide to support their findings? Throughout session 2008–2009, this empirical research project involved six Scottish secondary schools, two mathematics teachers from each school and students from different ages and stages. Teachers used TI-Nspire PC software and students the TI-Nspire handheld technology. This technology is specifically designed to allow dynamically linked multiple representations of mathematical concepts such that pupils can observe links between cause and effect in different representations such as dynamic geometry, graphs, lists and spreadsheets. The teachers were convinced that the use of multiple representations of mathematical concepts enhanced their students’ relational understanding of these concepts, provided evidence to support their argument and described changes in their classroom pedagogy.  相似文献   

15.
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for ‘drop in’ lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.  相似文献   

16.
Interest in interdisciplinary, integrated curriculum development continues to increase. However, teachers, who have been given primary responsibility for developing these materials, are often working with little guidance. At present there exists no clear definition of the meaning of integration of mathematics and science. A continuum model of integration is proposed as a useful tool for curriculum developers as they create new integrated mathematics and science curricula or adapt commercially prepared materials. On the continuum, activities range from mathematics or science involving no integration to those activities including balanced mathematics and science concepts. Several examples are given to illustrate the utility of the continuum model for analyzing integrated curricula. The continuum model is intended to be used by curriculum developers to clarify the relationship between the mathematics and science activities and concepts and to guide the modification of lessons.  相似文献   

17.
A common maxim in the educational profession is that one teaches the way one is taught. Indications are that preservice teachers' beliefs, attitudes, and practices may be linked to previous experiences. Calderhead & Robson (1991) underscored this concern by asserting that teachers use good teachers as models for developing their own images as teachers. Others have argued that the images held by teachers are used as frames of reference for their own teaching practices. In this article, preservice teachers' perceptions of themselves as science teachers are examined. The assertion is made that a long history of stereotypical science learning experiences — in elementary school, high school, and college — powerfully impacts the way in which elementary preservice teachers understand the nature of science and come to believe science should be taught. In the current study, the images and perceptions preservice teachers bring to science methods courses (as evidenced in drawings of themselves as science teachers at work) are identified and ways these images and perceptions may have been formed and how they can be reinforced or modified during a science methods course are discussed.  相似文献   

18.
This report describes an evaluation project that aimed to assess the potential of two elementary science specialists, as compared to elementary classroom teachers, to realize the reforms vision for science instruction in elementary classrooms. Participant science specialist background, views of elementary science teaching, and planning and assessment practices were compared to those of regular elementary classroom teachers in the specialist district, as well as in a comparable district not employing specialists. Specialists' views and practices were better aligned with those envisioned by current national reform documents in science education. Despite the constraints imposed by the nature of a program evaluation, the present report provides evidence to suggest that students taught by the science specialists (a) were engaged in open‐ended, inquiry‐oriented, science‐based activities of the kind often advocated, but mostly absent, in elementary school, and (b) demonstrated problem solving and higher order and critical thinking skills. This report is the first to provide empirical support for the advocated “effectiveness” of elementary science specialists in achieving the visions espoused by current reform efforts.  相似文献   

19.
In undergraduate mathematics courses, pre-service elementary school teachers are often faced with the task of re-learning some of the concepts they themselves struggled with in their own schooling. This often involves different cognitive processes and psychological issues than initial learning: pre-service teachers have had many more opportunities to construct understandings and representations than initial learners, some of which may be more complex and engrained; pre-service teachers are likely to have created deeply-held–and often negative–beliefs and attitudes toward certain mathematical ideas and processes. In our recent research, we found that pre-service teachers who used a particular computer-based microworld, one emphasising visual representations of and experimental interactions with elementary number theory concepts, overcame many cognitive and psychological difficulties reported in the literature. In this study, we investigate the possibilities of using a similarly-designed microworld that involves a set of rational number concepts. We describe the affordances of this microworld, both in terms of pre-service teacher learning and research on pre-service teacher learning, namely, the helpful “window” it gave us on the mathematical meaning-making of pre-service teachers. We also show how their interactions with this microworld provided many with a new and aesthetically-rich set of visualisations and experiences.  相似文献   

20.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号