首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
《Tetrahedron: Asymmetry》2005,16(6):1135-1140
Stereoselective synthesis of pharmaceutically interesting chiral tetrahydrofurans starting from mannose diacetonide is reported. A 1,4-diol system derived from mannose diacetonide, through a Mitsunobu reaction was stereospecifically cyclized to give chiral tetrahydrofurans. Both the C-1 and C-4 centers of d-mannose are successfully exploited to install the requisite side chains.  相似文献   

8.
9.
10.
《Tetrahedron: Asymmetry》2007,18(18):2218-2226
The trans-configured fosfomycin analogue, diethyl (1S,2S)-1,2-epoxy-3-hydroxypropylphosphonate, was synthesised by the intramolecular Williamson reaction of diethyl (1S,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate. The cis-analogue was obtained as O-ethyl or O,O-diethyl (1R,2S)-1,2-epoxy-3-hydroxypropylphosphonates, when (1R,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate or its 3-O-trityl derivative were used as starting materials, respectively. The intramolecular Williamson cyclisations of diethyl (1S,2R)- and (1R,2S)-1-benzyloxy-3-hydroxy-2-mesyloxypropylphosphonates led to diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, respectively, with the concomitant formation of diethyl (E)-1-benzyloxy-3-hydroxyprop-1-en-1-phosphonate. From diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, enantiomerically pure diethyl (1S,2S)- and (1R,2S)-1,2-dihydroxypropylphosphonates were obtained by catalytic hydrogenation, while diethyl (1S,2S)- and (1R,2S)-3-acetamido-1,2-dihydroxypropylphosphonates were produced after epoxide ring opening with dibenzylamine, acetylation and hydrogenolysis.  相似文献   

11.
Comparison of the kinetic and parallel kinetic resolutions of methyl (RS)-5-tert-butyl-cyclopentene-1-carboxylate allows for the efficient synthesis of both (1R,2S,5S)- and (1S,2R,5R)-enantiomers of methyl 2-amino-5-tert-butyl-cyclopentane-1-carboxylate.  相似文献   

12.
13.
Preparative method for the synthesis of lithium, sodium, cesium, and calcium salts of (E)-4-(5-arylisoxazol-3-yl)methyleneaminobutanoic, (E)-6-(5-arylisoxazol-3-yl)methyleneaminohexanoic, (E,S)-3-methyl-2-(5-arylisoxazol-3-yl)methyleneaminobutanoic, (E,S)-4-methyl-2-(5-arylisoxazol-3-yl)methyleneaminopentanoic and (E,2S,3S)-3-methyl-2-(5-arylisoxazol-3-yl)methyleneaminopentanoic acids was developed by reacting 5-phenyl(4-tolyl)isoxazole-3-carbaldehydes with amino acids like 4-aminobutyric and 6-aminocaproic acids, L-valine, L-leucine or L-isoleucine in the presence of lithium hydride, sodium methoxide, cesium carbonate or calcium hydride in boiling methanol.  相似文献   

14.
15.
16.
17.
18.
Optically active (+)-(S)-5-sec-butyl- and (-)-(S)-3-sec-butyl-2(1H)-pyridinone are synthesized and the relationship between optical activity and minimum optical purity of the latter is determined.  相似文献   

19.
3-(2-alkenoyl)-thiocarbazic acid O-methyl esters 1 are desulfurated by bromine and the unknown intermediates are transformed by alkali to 5-(1-alkenyl)-1, 3, 4-oxadiazol-2(3H)-ones ( 2 ). This type of oxadiazolone substitution is not realizable by the common ring closure of hydrazides with phosgene due to pyrazolidinone ring closure of unsaturated acids with hydrazine.  相似文献   

20.
Conjugate addition of lithium dibenzylamide to tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate occurs with high levels of stereocontrol, with preferential addition of lithium dibenzylamide to the face of the cyclic alpha,beta-unsaturated acceptor anti- to the 3-methyl substituent. High levels of enantiorecognition are observed between tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate and an excess of lithium (+/-)-N-benzyl-N-alpha-methylbenzylamide (10 eq.) (E > 140) in their mutual kinetic resolution, while the kinetic resolution of tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate with lithium (S)-N-benzyl-N-alpha-methylbenzylamide proceeds to give, at 51% conversion, tert-butyl (1R,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate consistent with E > 130, and in 39% yield and 99 +/- 0.5% de after purification. Subsequent deprotection by hydrogenolysis and ester hydrolysis gives (1R,2S,3R)-3-methylcispentacin in > 98% de and 98 +/- 1% ee. Selective epimerisation of tert-butyl (1R,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate by treatment with KO'Bu in 'BuOH gives tert-butyl (1S,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate in quantitative yield and in > 98% de, with subsequent deprotection by hydrogenolysis and ester hydrolysis giving (1S,2S,3R)-3-methyltranspentacin hydrochloride in > 98% de and 97 +/- 1% ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号