首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infrared spectra of the title compounds are reported and discussed. The influence of the peroxide groups on the bond properties of the other ligands and some characteristics of the metal—peroxide interactions are analyzed.  相似文献   

2.
3.
4.
5.
6.
Preparation and Crystal Structures of Ag[N(CN)2](PPh3)2, Cu[N(CN)2](PPh3)2, and Ag[N(CN)2](PPh3)3 The coordination compounds Ag[N(CN)2](PPh3)2 ( 1 ), Cu[N(CN)2](PPh3)2 ( 2 ), and Ag[N(CN)2](PPh3)3 ( 3 ) are obtained by the reaction of AgN(CN)2 or CuN(CN)2 with triphenylphosphane in CH2Cl2. X‐ray structure determinations were performed on single crystals of 1 , 2 , and 3 · C6H5Cl. The three compounds crystallize monoclinic in the space group P21/n with the following unit cell parameters. 1 : a = 1216.07(9), b = 1299.5(2), c = 2148.4(3) pm, β = 99.689(13)°, Z = 4; 2 : a = 1369.22(10), b = 1257.29(5), c = 1888.04(15) pm, β = 94.395(7)°, Z = 4; 3 · C6H5Cl: a = 1276.6(4), b = 1971.7(3), c = 2141.3(5) pm, β = 98.50(3)°, Z = 4. In all structures the metal atoms have a distorted tetrahedral coordination. The crystal structure of 3 · C6H5Cl shows monomeric molecular units with terminal coordinated dicyanamide. The crystal structure of 1 is built up by dinuclear units, which are bridged by dicyanamide ligands. However, the crystal structure of 2 corresponds to a onedimensional coordination polymer, bridged by dicyanamide anions.  相似文献   

7.
Hydroxame derivatives of carboxymethyl- and carboxyethyldextrans have been prepared and characterized by elemental analysis as well as by IR and UV spectroscopy. The effect of reaction conditions on the products yield has been studied.  相似文献   

8.
Formation and Structure of the Cyclophosphanes P4(CMe3)2[P(CMe3)2]2 and P4(SiMe3)2[P(CMe3)2]2 n-Triphosphanes showing a SiMe3 and a Cl substituent at the atoms P1 and P2, like (Me3C)2P? P(SiMe3)? P(CMe3)Cl 3 or (Me3C)2P? P(Cl)? P(SiMe3)2 4 are stable only at temperatures below ?30°C. Above this temperature these compounds lose Me3SiCl, thus forming cyclotetraphosphanes, P4(CMe3)2[P(CMe3)2]2 1 out of 3 , P4(SiMe3)2[P(SiMe3)2]2 2a (cis) and 2b (trans) out of 4 . The formation of 1 proceeds via (Me3C)2P? P?PCMe3 5 as intermediate compound, which after addition to cyclopentadiene to give the Diels-Alder-adduct 6 (exo and endo isomers) was isolated. 6 generates 5 , which then forms the dimer compound 1 . Likewise (Me3C)2P? P?P-SiMe3 8 (as proven by the adduct 7 ) is formed out of 4 , leading to 2a (cis) and 2b (trans). Compound 1 is also formed out of the iso-tetraphosphane P[P(CMe3)2]2[P(CMe3)Cl] 9 , which loses P(CMe3)2Cl when warmed to a temperature of 20°C. 1 crystallizes monoclinically in the space group P21/a (no. 14); a = 1762.0(15) pm; b = 1687.2(18) pm; c = 1170.5(9) pm; β = 109.18(5)° and Z = 4 formula units in the elementary cell. The molecule possesses E conformation. The central four-membered ring is puckered (approx. symmetry 4 2m; dihedral angle 47.4°), thus bringing the substituents into a quasi equatorial position and the nonbonding electron pairs into a quasi axial position. The bond lengths in the four-membered ring of 1 (d (P? P) = 222.9 pm) are only slightly longer than the exocyclic bonds (221.8 pm). The endocyclic bond angles \documentclass{article}\pagestyle{empty}\begin{document}$ \bar \beta $\end{document}(P/P/P) are 85.0°, the torsion angles are ±33° and d (P? C) = 189.7 pm.  相似文献   

9.
H ? C Bond Cleavage in Ferrocene by Organylruthenium Complexes Cp*(Me3P)2RuCH2CMe3 ( 1 ) reacts at 85°C with ferrocene ( 2 ) by cleavage of one H? C bond in 2 to give CpFe[η5-C5H4Ru(PMe3)2Cp*] ( 3 ) (Cp = η5-C5H5; Cp* = η5-C5Me5) and neopentane. The ruthenium atom in 3 has a distorted tetrahedral geometry, the planar Cp ligands in the ferrocenyl fragment are eclipsed. Solutions of 3 in [D6]benzene or [D8]THF exhibit H? D exchange of the ferrocenyl protons. In the [D8]THF molecule only the α-deuterium atoms are exchanged. Reaction pathways for this exchange are discussed.  相似文献   

10.
Structurally Chemical Investigation of Monoammin Copper (I) Complexes : [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 The preparation and the properties of [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 are described. I.R. and Raman spectra have been recorded and assigned. According to X-ray powder diagrams, [CuNH3]2[Pt(CN)6] crystallizes in the trigonal space group D–P3 ml, a = 7.771, c = 5.988 Å, Z = 1. According to the spectroscopic and crystallographic data, it is concluded that the CuI ion is coordinated with one NH3 group and with the N atoms of the cyanometallate anions. The coordination number of the Cu+ is 4 in [CuNH3]2[Pt(CN)6] and 3 in [CuNH3]2[Pt(CN)4]. In the Cu3[Co(CN)6] · 2 NH3 complex two Cu atoms have the coordination number 2, the third Cu atom 4.  相似文献   

11.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

12.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

13.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds.  相似文献   

14.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

15.
Reactions of ClS[OCH(CF3)2]3 and S[OCH(CF3)2]2 with Phosphorus(III) Derivatives The sulfurane ClS[OCH(CF3)2]3 reacts with Me3P to give the phosphonium salt [Me3POCH(CF3)2]+Cl?, in the case of (MeO)3P products of an Arbuzov reaction are found: (MeO)2P-(:O)OCH(CF3)2 and MeCl; the sulfurane is reduced to the sulfoxylate S[OCH(CF3)2]2. The cyclic phosphite FP[OC(CF3)2C(CF3)2O] and P[OCH(CF3)2]3 furnish derivatives of pentacoordinated phosphorus upon reaction with ClS[OCH(CF3)2]3. The sulfoxylate S[OCH(CF3)2]2 oxidises Me3P, (MeO)3P and P[OCH(CF3)2]3 to form R3P? O and R3P? S (R = Me, OMe, OCH(CF3)2). The ether (CF3)2CHOCH(CF3)2 is isolated, too.  相似文献   

16.
17.
The title compounds, poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­methanesulfonato‐lithium(I)], [Li2(CF3SO3)2(C6H14O3)]n, and poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­acetato‐dilithium(I)‐μ3‐tri­fluoro­acetato], [Li3(C2F3O2)3(C6H14O3)]n, consist of one‐dimensional polymer chains. Both structures contain five‐coordinate Li+ cations coordinated by a tridentate diglyme [bis(2‐methoxy­ethyl) ether] mol­ecule and two O atoms, each from separate anions. In both structures, the [Li(diglyme)X2]? (X is CF3SO3 or CF3CO2) fragments are further connected by other Li+ cations and anions, creating one‐dimensional chains. These connecting Li+ cations are coordinated by four separate anions in both compounds. The CF3SO3? and CF3CO2? anions, however, adopt different forms of cation coordination, resulting in differences in the connectivity of the structures and solvate stoichiometries.  相似文献   

18.
Synthesis, Structures, and EPR-Spectra of the Rhenium(II) Nitrosyl Complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2(OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) The paramagnetic rhenium(II) nitrosyl complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2 · (OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) are formed during the reaction of [ReOCl3(PPh3)2] with NO gas in CH2Cl2/EtOH. These and two other ReII complexes with 5 d5 ”︁low-spin”︁”︁-configuration can be observed during the reaction EPR spectroscopically. Crystal structure analysis shows linear coordinated NO ligands (Re–N–O-angles between 171.9 and 177.3°). Three OPPh3 ligands are meridionally coordinated in the final product of the reaction, [Re(NO)Cl2(OPPh3)3][ReO4] (monoclinic, P21/c, a = 13.47(1), b = 17.56(1), c = 24.69(2) Å, β = 95.12(4)°, Z = 4). [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)] (triclinic P 1, a = 10.561(6), b = 11.770(4), c = 18.483(8) Å, α = 77.29(3), β = 73.53(3), γ = 64.70(4)°, Z = 2) and [Re(NO)Cl2 (OPPh3)2(OReO3)] (monoclinic P21/c, a = 10.652(1), b = 31.638(4), c = 11.886(1) Å, β = 115.59(1)°), Z = 4) can be isolated at shorter reaction times besides the complexes [Re(NO)Cl3(Ph3P)2], [Re(NO)Cl3(Ph3P) · (Ph3PO)], and [ReCl4(Ph3P)2].  相似文献   

19.
20.
Syntheses and Crystal Structures of new Amido- und Imidobridged Cobalt Clusters: [Li(THF)2]3[Co32-NHMes)3Cl6] (1), [Li(DME)3]2[Co184-NPh)33-NPh)12Cl3] (2), [Li(DME)3]2[Co64-NPh)(μ2-NPh)6(PPh2Et)2] (3), and [Li(THF)4][Co83-NPh)62-NPh)3(PPh3)2] (4) The reactions of cobalt(II)-chloride with the lithium-amides LiNHMes and Li2NPh leads to an amido-bridged multinuclear complex [Li(THF)2]3[Co32-NHMes)3Cl6] ( 1 ) as well as to the imido-bridged cobalt cluster [Li(DME)3]2[Co184-NPh)33-NPh)12Cl3] ( 2 ). In the presence of tertiary phosphines two imido-bridged cobalt clusters [Li(DME)3]2[Co64-NPh)(μ2-NPh)6(PPh2Et)2] ( 3 ) and [Li(THF)4][Co83-NPh)62-NPh)3(PPh3)2] ( 4 ) result. The structures of 1 – 4 were characterized by X-ray single crystal structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号