首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to predict the extraction ability of 12-crown-4 for different metallic ions, the complexes [M(12-crown-4)] and [M(H2O)4] (where M=Li+, Na+, K+, Be2+, Mg2+, Ca2+, Cu2+ and Zn2+) were investigated by the density functional theory without restrictions for their geometry. The metal binding capability was evaluated using the binding energy, and the effect of nature of the metal on the binding properties was also studied. The results of the calculations showed that the coordination ability of a donor molecule towards different metal ions increased in proportion to their ionization potential. In addition, based on the extraction distribution coefficient, we found that 12-crown-4 can selectively extract Cu2+ and Be2+ ions from aqueous solutions of mixed cations. Obviously, the stability of complexes and the extraction power of extractants depend greatly on the nature of the metal ions. Calculation results from our study could be used to predict the extraction power of this crown ether and could play a guiding role in planning experiments.  相似文献   

2.
Abstract

Stationary phases which have great affinity for Na+ were synthesized by incorporating 12-crown-4 polymer on silica gel for liquid chromatography of alkali and alkaline-earth metal ions. The stationary phases interact with Na+ most strongly of all alkali metal ions as expected, and the retention times on liquid chromatography of alkali metal ions were in the sequence Li+ < Cs+ < Rb+ < K+ < Na+. On the stationary phase, a mixture of Li+, Na+, and K+ can be separated completely by the elution with water/methanol mixture. By the use of spherical type silica gel instead of irregular type one and by effective end-capping of the residual silanol groups, the peak symmetry was improved significantly.  相似文献   

3.
The transfer of Li+, Na+, K+ and Cs+ from water to nitrobenzene at their interface as facilitated by benzo-12-crown-4, benzo-15-crown-5, 4′-methylbenzo-15-crown-5 and benzo-18-crown-6 was studied by cyclic voltammetry. The mechanism of the transfer process was discussed and the stability constants of the complexes formed in nitrobenzene were determined.  相似文献   

4.
The complex forming properties with alkali metal and ammonium ions of a series of oligo benzo-condensed 18-crown-6 ethers1–8 having a different gradation of lipophilicity and of molecular rigidity are investigated by voltammetry at the interface of two immiscible electrolyte solutions (ITIES) and by a liquid-liquid extraction technique. The experimental results obtained in the two phase system H2O/nitrobenzene are discussed in relation to the structure of the crown and the cation type. The stability constants for the 1 : 1 complexes of Na+, K+, Rb+, Cs+ and NH 4 + in nitrobenzene have been determined and compared with the extraction constants for the 1: 1 complexes of Na+ and K+ and for the 1 : 1 and 1 : 2 complexes of Cs+, showing the effect of oligo benzo condensation for the 18-crown-6 system.  相似文献   

5.
The transport of metal ions (Ca2+, Sr2+, Ba2+, Na+, K+, Cs+) through hollow fiber supported dichlorobenzene liquid membrane has been studied. The transport of cations using 8-crown-6 ether as a carrier and picrate as co-counter ion as well as a pertraction device and capillary isotachophoresis (ITP) measurement of the cation concentration is described.  相似文献   

6.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

7.
Guanidinium-selective membrane electrodes were constructed with dibenzo-24-crown-8, dibenzo-27-crown-9, tribenzo-27-crown-9 or dibenzo-30-crown-10. The detection limits and selectivity coefficients towards different interfering ions, such as Li+, Na+, K+, NH+4, Mg2+ and Ca2+ were determined. The electrode with dibenzo-27-crown-9 shows linear response over the range 10?1–10?4 M, with selectivity coefficients about 10?2 for most alkali and alkaline earth metal ions.  相似文献   

8.
Chromene derivatives bearing oxymethyl-12-crown-4 (1), -15-crown-5 (2), -18-crown-6 (3) ether moieties, and non-cyclic analogue (4) were synthesized, and their metal ion binding properties and photochromism were examined. NMR titration with alkali metal ions revealed that 1 formed a 1:2 complex (metal ion: ligand) with Na+, while Li+ afforded a 1:1 complex of 1. In cases of K+ and Rb+, the complexes were a mixture of 1:1 and 1:2 complexes, but the formation of 1:1 complex was observed again with Cs+. Under UV irradiation, however, the complex stoichiometry of 1 with all alkali metal ions was 1:1. As a comparison of NMR spectra between the Li+ and Na+ complexes of 1 indicated considerable upfield shift for the chromene moiety of the Na+ complex, π-π stacking of the chromene moiety seems to induce formation of the 1:2 complex. These results indicate that the chromene moiety is not only to show photochromism but also to induce aggregation to form the 1:2 complex resulted in switching of the complex stoichiometry by UV irradiation. The formation of 1:2 complex appeared only with 1 because flexibility of the crown moieties for 2 and 3 interfered the formation of 1:2 complex. Studies on photochromism in the presence of a metal ion demonstrated that the chromene derivatives bearing crown ether moieties show ion-responsive photochromism depending on the metal ion binding ability of their crown ether moieties.  相似文献   

9.
《Polyhedron》1999,18(20):2597-2603
Macrotetracyclic complexes of nickel(II) containing crown ethers as pendant arms, [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2, were prepared and characterized. The binding constants of the complexes toward alkali metal ions are relatively small compared with those of free 15-crown-5 or 18-crown-6 and the reduction potentials of the [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2 in the presence of alkali metal ions shift to the positive direction in the order Li+>Na+>K+ and K+>Na+>Li+, respectively.  相似文献   

10.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

11.
Stability constants K ML for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-24-crown-8 (DB24C8) and dibenzo-18-crown-6 (DB18C6) in water have been determined by a capillary electrophoretic technique at 25°C. The K ML sequence is Na+ < K+ < Rb+ < Cs+ for DB24C8 and Na+ < K+ > Rb+ > Cs+ for DB18C6. Compared with DB18C6, DB24C8 exhibits higher selectivity for K+ over Na+, but lower selectivity for K+, Rb+, and Cs+. To evaluate the solvation of the complexes in water, their transfer activity coefficients sH2O between polar nonaqueous solvents and water have been calculated. The sH2O values provide the following information: interactions with water of the metal ions and of the crown-ether oxygens are greatly reduced upon complexation and the complexes undergo hydrophobic hydration in water; the character of each alkali metal ion in solvation is more effectively masked by DB24C8 than by DB18C6, because of the larger and more flexible ring structure of DB24C8. Solvent effects on the complex stabilities are discussed on the basis of the sH2O values.  相似文献   

12.
A comparative study of the competitive cation exchange between the alkali metal ions K+, Rb+, and Cs+ and the Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2 was performed in aqueous solution by a combined use of the 23Na and 1H NMR spectroscopy. The titration data confirm the different binding affinities of these ions for the G‐quadruplex and, in particular, major differences in the behavior of Cs+ as compared to the other ions were found. Accordingly, Cs+ competes with Na+ only for the binding sites at the quadruplex surface (primarily phosphate groups), while K+ and Rb+ are also able to replace sodium ions located inside the quadruplex. Furthermore, the 1H NMR results relative to the CsCl titration evidence a close approach of Cs+ ions to the phosphate groups in the narrow groove of [d(G4T4G4)]2. Based on a three‐site exchange model, the 23Na NMR relaxation data lead to an estimate of the relative binding affinity of Cs+ versus Na+ for the quadruplex surface of 0.5 at 298 K. Comparing this value to those reported in the literature for the surface of the G‐quadruplex formed by 5′‐guanosinemonophosphate and for the surface of double‐helical DNA suggests that topology factors may have an important influence on the cation affinity for the phosphate groups on DNA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Calix[4]arene-based cation receptor 1 has been synthesised by following a multi-step synthetic procedure. The fluorescence properties of 1 upon the addition of various metal ions were investigated by fluorescence spectroscopy. As a result, it was revealed that 1 displayed dramatic quenching effect upon the exposure to Cs+. In contrast, no significant quenching effects were observed upon the addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Ag+, Zn2+ and Ni2+. Compound 1 was also found by Job plot to form a 1:1 complex with Cs+. In addition, we also prepared 1-embedded electrospun nanofibrous film (NF-1) as an adsorbent for Cs+. NF-1 is proved to adsorb Cs+ effectively from an aqueous solution, indicating that it would be usefully utilised as an adsorbent to remove Cs+.  相似文献   

14.
(Extraction of alkali on alkaline earth metal ions with (sym-dibenzo-14-crown-4-oxy)- and (sym-dibenzo-16-crown-5-oxy)-carboxylic acids.)The extraction of lithium, sodium, potassium, calcium and some other metal ions with dibenzo-4-crown-4-oxy- and dibenzo-16-crown-5-oxycarboxylic acids containing the groups -CH2COOH, -(CH2)2COOH, -(CH2)3COOH, -CH(C2H5)COOH and -CH(C4H9)COOH was studied. The extraction increases as a function of the lipophilic character of the carboxylic acid group. Calcium, barium and strontium ions are better extracted than Li+, Na+ and K+; there are only small differences among the alkaline earth metal ions. Evaluated from the extraction data, the composition of the extracted species was 1:1 (metal/ligand) for Li+, and 1:2 for CaCa2+; Na+ and K+ favour the formation of 1:2 complexes with dibenzo-14-crown-4-derivatives bbut 1:1 complexes with dibenzo-16-crown-5-oxy-carboxylic acids. The dependence of the distribution ratio on pH does not provide unequivocal evidence for the composition of the extracted compounds.  相似文献   

15.
A tetranitrile monomer was synthesized by nucleophilic aromatic substitution of N,N′-bis(2-hydroxyethyl)-4,13-diaza-18-crown-6 onto 4-nitrophthalonitrile. A series of polymeric metal-free and metallophthalocyanine (M = 2H, Zn, Cu, Co and Ni) polymers was prepared by polymeric tetramerization reaction of the tetranitrile monomer with proper materials. The electrical conductivities of the polymeric phthalocyanines measured as gold sandwiches were found to be ∼10−9–10−4 S cm−1 in a vacuum and in argon. The extraction ability of the metal-free polymeric phthalocyanine was evaluated in tetrahydrofuran using several alkali metal picrates such as Li+, Na+, K+ and Cs+. The extraction affinity of the metal-free polymeric phthalocyanine for K+ was found to be highest in the heterogeneous solid–liquid phase extraction experiments. The disaggregation property of the metal-free polymeric phthalocyanine was investigated with sodium, potassium and ammonium ions and methanol. All the novel compounds were characterized by using elemental analysis, UV–Vis, FT-IR, NMR and MS spectral data and DTA/TG.  相似文献   

16.
A number of N-alkylnitrobenzoaza-15-crown-5 with the macrocycle N atom conjugated with the benzene ring were obtained. The structural and complexing properties of these compounds were compared with those of model nitrobenzo- and N-(4-nitrophenyl)aza-15-crown-5 using X-ray diffraction, 1H NMR spectroscopy, and DFT calculations. The macrocyclic N atom of benzoazacrown ethers are characterized by a considerable contribution of the sp3-hybridized state and a pronounced pyramidal geometry; the crownlike conformation of the macrocycle is preorganized for cation binding, which facilitates complexation. The stability constants of the complexes of crown ethers with the NH4 +, EtNH3 +, Na+, K+, Ca2+, and Ba2+ ions were determined by 1H NMR titration in MeCN-d3. The most stable complexes were obtained with alkaline-earth metal cations, which is due to the higher charge density at these cations. The characteristics of the complexing ability of N-alkylnitrobenzoaza-15-crown-5 toward alkaline earth metal cations are comparable with analogous characteristics of nitrobenzo-15-crown-5 and are much better than those of N-(4-nitrophenyl)aza-15-crown-5.  相似文献   

17.
A series of five monoaza crown ethers with 12-crown-4 and 15-crown-5 rings were studied with respect to their complexation of Li+, Na+, K+, Ca2+ and Sr2+ ions in 95/5 (v/v) methanol/ water. The complexes were studied by potentiometric titrations, with pH and sodium ion-selective electrodes. The acidity constants of the protonated ligands, and the stability constants of the 1:1 metal complexes were determined. The results show that the stability constants increase with the total number of oxygen atoms in the ligand, and mostly also in the sequence Li+ < K+ < Na+ < Ca2+ < Sr2+.  相似文献   

18.
Reactions of laser-desorbed Na+, K+, Rb+, and Cs+ with thermally vaporized valinomycin generate metal-ligand complexes in a Fourier transform ion cyclotron resonance trapping cell, proving that complexes can form via gas-phase ion-molecule reactions. Although desorption of intact pre-formed complexes cannot be ruled out, this route appears minor. Relative rate constants for the complexation reactions show strong dependence on the charge densities of the cations. Competition experiments between valinomycin and the synthetic ionophores 18-crown-6 (18C6) and [2.2.2]-cryptand ([2.2.2]) show that valinomycin has a higher intrinsic alkali metal cation affinity than either 18C6 or [2.2.2], in contrast to the complex formation constants observed in methanol, where K+ affinities are in the order [2.2.2] > 18C6 > valinomycin.  相似文献   

19.
A new facile synthetic route to benzils containing fragments of 12-crown-4, 15-crown-5, and 18-crown-6 by oxidation of corresponding stilbenes was developed. The first representative of a new family of fluorescent sensors was obtained by reaction of bis(15-crown-5)benzil with o-phenylenediamine. The latter exhibits great fluorescence enhancement upon association with K+ and Rb+ compared to Na+ and Cs+.  相似文献   

20.
Artificial macrocyclic polyethers were synthesized and applied as neutral carriers for ion-selective PVC membrane electrodes, ion-chromatographic packing materials, extractants and adsorbents for ion separation, coating materials for piezoeletrical membrane sensors for organic species, and ion-transport carriers through liquid membranes. Ion-selective electrodes such as those for K+ Na+, UO22+, Cs+, Pb2+, Fe3+, Hg2+ and Ag+ ions based on crown ether-phosphotungstic acid (PW) precipitates and dithio crown ethers respectively were prepared and showed good sensitivity and selectivity. Crown ether-PW precipitates were applied as adsorbents of rare-earth ions and some common heavy-metal ions. Some rare-earth ions were easily extracted with crown ethers, especially 15-crown-5. Poly(stytene/divinyl benzene) cryptand-22 resin was synthesized and applied as a bifunctional stationary phase of ion chromatography to separate bom cations and anions, even some organic carboxylate geometric isomers. Crown ethers such as mono-benzo-15-crown-5 was successfully applied as a coating material on piezoelectric quartz membrane sensors for some organic species. The oscillation frequency of the crown-ether quartz-membrane sensor was sensitive to organic vapours such as amines and alcohols. Upon adsorption of organic species on the crown-ether quartz membrane, the oscillation frequency of the sensor decreased obviously. Special crown ether such as dibenzo-16-crown-5-oxyacetic acid, decyl-cryptand-22 and 1, 4-dihydro-pyridine-18-crown-5 were synthesized and successfully applied as ion-transport carriers (ionophores) for transport of Na+ K+ and Mg2+ ions through liquid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号