首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuum ultraviolet pulsed field ionization-photoelectron and photoionization efficiency spectra of NCCN have been measured in the energy region of 13.25-17.75 eV. The analyses of these spectra have provided accurate ionization energy (IE) values of 13.371+/-0.001, 14.529+/-0.001, 14.770+/-0.001, and 15.516+/-0.001 eV for the formation of NCCN(+) in the X(2)Pi(g), A(2)Sigma(g) (+), B(2)Sigma(u) (+), and C(2)Pi(u) states, respectively. The ionization energy [NCCN(+)(B(2)Sigma(u) (+))] value determined here indicates that the origin of the NCCN(+)(B(2)Sigma(u) (+)) state lies lower in energy by 25 meV than previously reported. A set of spectroscopic parameters for NCCN(+)(X(2)Pi(g)) has been calculated using high level ab initio calculations. The experimental spectra are found to consist of ionizing transitions populating the vibronic levels of NCCN(+), which consist of pure vibronic progressions, combination modes involving the symmetric CN stretch, the CC stretch, and even quanta of the antisymmetric CN stretch, and bending vibrations. These bands are identified with the guidance of the present ab initio calculations.  相似文献   

2.
Time-dependent density functional theory (TDDFT) calculations of charge-transfer excitation energies omegaCT are significantly in error when the adiabatic local density approximation (ALDA) is employed for the exchange-correlation kernel fxc. We relate the error to the physical meaning of the orbital energy of the Kohn-Sham lowest unoccupied molecular orbital (LUMO). The LUMO orbital energy in Kohn-Sham DFT--in contrast to the Hartree-Fock model--approximates an excited electron, which is correct for excitations in compact molecules. In CT transitions the energy of the LUMO of the acceptor molecule should instead describe an added electron, i.e., approximate the electron affinity. To obtain a contribution that compensates for the difference, a specific divergence of fxc is required in rigorous TDDFT, and a suitable asymptotically correct form of the kernel fxc(asymp) is proposed. The importance of the asymptotic correction of fxc is demonstrated with the calculation of omegaCT(R) for the prototype diatomic system HeBe at various separations R(He-Be). The TDDFT-ALDA curve omegaCT(R) roughly resembles the benchmark ab initio curve omegaCT CISD(R) of a configuration interaction calculation with single and double excitations in the region R=1-1.5 A, where a sizable He-Be interaction exists, but exhibits the wrong behavior omegaCT(R)相似文献   

3.
We report here the first observation of the D (1)Delta(g) state of the C(3) radical, which provides the first comprehensively analyzed example of the dynamic Renner-Teller splitting in Delta symmetry. Two color double resonance spectroscopy via the A (1)Pi(u) state was employed to experimentally probe an extensive range of vibronic levels in this D (1)Delta(g) state, covering all three modes of vibration of C(3). The analysis was supported by ab initio potential energy surface calculations on the C(3) radical to outline the lowest eight singlet electronic states. Two methods were used to analyze the Renner-Teller effect. The first method is an empirical Hamiltonian based on normal modes, using harmonic oscillator functions as a basis, with Renner-Teller and other terms added as required, which allows conventional vibrational parameters to be determined. The second is a much larger program that uses the exact kinetic energy operator for a triatomic molecule to calculate vibronic energy levels directly from the Renner-Teller pair of potential energy surfaces. Both methods give a good fit to the experimental results, with only a small adjustment to the ab initio surfaces required for the latter. One of the overall conclusions is that the Renner-Teller effect is rather smaller in the D (1)Delta(g) state than in the A (1)Pi(u) state.  相似文献   

4.
In the present study we give the results of the ab initio calculations on the vibronic, spin-orbit, and magnetic hyperfine structure in the X (2)Pi electronic state of the NCO radical. The calculations of the potential surfaces and the electronic mean values of the hyperfine coupling constants are carried out by means of the density functional theory approach (B3LYP functional combined with an atomic orbital basis set suitable for calculations of the hyperfine structure). The vibronic levels, spin-orbit splitting, and the vibronic mean values of the components of the hyperfine tensor in the vibronic species are calculated using a variational method. The results of the calculations are in good agreement with the available experimental data.  相似文献   

5.
The vibronic structure of the photoelectron spectra of the X (2)Pi state of XCN(+) (X=F, Cl, and Br) has been calculated, assuming that the X (2)Pi state can be considered as an isolated electronic state. The Renner-Teller coupling of the two components of the (2)Pi state via the degenerate bending mode as well as spin-orbit coupling effects are taken into account. The two stretching modes are treated within the so-called linear vibronic-coupling model. The vibronic and spin-orbit parameters have been determined by accurate ab initio electronic-structure calculations. While spin-orbit effects are small in FCN(+), the large spin-orbit splitting of the X (2)Pi state of the BrCN(+) leads to a complete quenching of the Renner-Teller effect. The X (2)Pi state of the ClCN(+) is shown to be of particular interest: here the resonance condition for linear-relativistic Renner-Teller coupling is approximately fulfilled. This coupling mechanism leads to a significant intensity transfer to vibronic levels with odd quanta of the bending mode. The calculated spectrum indicates that this novel relativistic vibronic-coupling effect should be observable in high-resolution (electron energy resolution of the order of a few meV) photoelectron spectra of ClCN.  相似文献   

6.
We report on a high-resolution C-K and O-K near-edge x-ray-absorption fine-structure (NEXAFS) study of large aromatic molecules in condensed thin films, namely, anhydrides 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 3,4,9,10-perylene-tetracarboxylic acid dianhydride, benzoperylene-(1,2)-dicarboxylic acid anhydride, and 1,8-naphthalene-dicarboxylic acid anhydride and the quinoic acenaphthenequinone. Due to the high-energy resolution of the third-generation synchrotron source BESSY II we observe large differences in the NEXAFS fine structures even for very similar molecules, resulting in a wealth of new information. The rich fine structure can unambiguously be assigned to the coupling of electronic transitions to vibronic excitations. Backed by ab initio calculations we present a detailed analysis of the spectra that allows the complete interpretation of the near-edge features. It also yields information on the vibronic properties in the electronically excited state as well as on the response of the electronic system upon core excitation. The strong differences in the electron-vibron coupling for different molecules are discussed.  相似文献   

7.
An ab initio multireference single- and double-excitation configuration interaction (CI) study is carried out for the ground and excited electronic states of alkali-hydride cations (LiH(+), NaH(+), KH(+), RbH(+), and CsH(+)). For all alkali-metal atoms, the first inner-shell and valence electrons (nine active electrons, three for Li) are considered explicitly in the ab initio self-consistent-field and CI calculations. The adiabatic potential energy curves, radial and rotational couplings are calculated and presented. Short-range (~3 a.u.) potential wells produced by the excitation of the inner-shell electrons are found. The depths of the inner potential wells are much greater than those of the outer wells for the CsH(+) system. The computed spectroscopic constants for the long-range potential well of the 2 (2)Σ(+) state are very close to the available theoretical and experimental data. The electronic states of alkali-hydrogen cations are also compared with each other, it is found that the positions of the potential wells shift to larger internuclear distances gradually, and the depths of these potential wells become greater with increasing alkali-metal atomic number. The relationships between structures of the radial coupling matrix elements and the avoiding crossings of the potential curves are analyzed. From NaH(+) to CsH(+), radial coupling matrix elements display more and more complex structures due to the gradual decrease of energy separations for avoided crossings. Finally, the behavior of some rotational couplings is also shown.  相似文献   

8.
State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the electronic states in the A(1)Σ(u)(+), c(3)Π(u), and a(3)Σ(u)(+) manifold of the strontium dimer, the spin-orbit and nonadiabatic coupling matrix elements between the states in the manifold, and the electric transition dipole moment from the ground X(1)Σ(g)(+) to the nonrelativistic and relativistic states in the A+c+a manifold. The potential energy curves and transition moments were obtained with the linear response (equation of motion) coupled cluster method limited to single, double, and linear triple excitations for the potentials and limited to single and double excitations for the transition moments. The spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction method limited to single and double excitations. Our results for the nonrelativistic and relativistic (spin-orbit coupled) potentials deviate substantially from recent ab initio calculations. The potential energy curve for the spectroscopically active (1)0(u)(+) state is in quantitative agreement with the empirical potential fitted to high-resolution Fourier transform spectra [A. Stein, H. Kno?ckel, and E. Tiemann, Eur. Phys. J. D 64, 227 (2011)]. The computed ab initio points were fitted to physically sound analytical expressions, and used in converged coupled channel calculations of the rovibrational energy levels in the A+c+a manifold and line strengths for the A(1)Σ(u)(+)←X(1)Σ(g (+) transitions. Positions and lifetimes of quasi-bound Feshbach resonances lying above the (1)S(0) + (3)P(1) dissociation limit were also obtained. Our results reproduce (semi)quantitatively the experimental data observed thus far. Predictions for on-going and future experiments are also reported.  相似文献   

9.
The interaction of He with Br2 in electronically excited B 3Piu state is investigated using spin-unrestricted single and double coupled-cluster approach with noniterative perturbative treatment of triple excitations. Internal electrons of the Br atom are described by effective core pseudopotentials. The validity of this approach is analyzed by comparing the lowest 2Sigma+ and 2Pi electronic states of the HeBr molecule with those obtained in all electron calculations [J. Chem. Phys. 115, 10438 (2001)]. In this context, we examine the performance of different basis sets and saturation with bond functions. The comparison of theoretical blue-shifts with the experiment provides confidence about the present ab initio calculations. In addition, He-Br results of ab initio calculations at the same level are used to obtain approximate He-Br2 (3Piu) interactions in the framework of the diatomics-in-molecule first order perturbation theory (IDIM-PT1) [J. Chem. Phys. 104, 9913 (1996)]. Overall, the IDIM-PT1 model results show a good agreement with the ab initio ones, being the main difference the sensitivity to the elongation of the Br-Br bond.  相似文献   

10.
The vibronic structure of the closely spaced and strongly coupled X 2Sigma+ and A 2Pi states in the photodetachment spectra of CCCl- and CCBr- has been calculated by considering Sigma-Pi vibronic coupling together with spin-orbit coupling. The stretching modes are treated within the so-called linear-vibronic-coupling model. The vibronic and spin-orbit parameters have been determined by accurate ab initio electronic-structure calculations. While the nonrelativistic vibronic-coupling parameters are of approximately equal strength in CCCl and CCBr, the vibronic-coupling parameters of spin-orbit origin are found to be larger in the latter. The calculated photodetachment spectra of both systems are shown to exhibit a complicated vibronic structure due to strong Sigma-Pi vibronic coupling. The spectral envelopes of the calculated photodetachment spectra exhibit a double-hump reminiscent of strongly coupled Exe Jahn-Teller systems.  相似文献   

11.
The UV absorption spectrum of the permanganate anion is a prototype transition-metal complex spectrum. Despite this being a simple d0 Td system, for which a beautiful spectrum with detailed vibrational structure has been available since 1967, the assignment of the second and third bands is still very controversial. The issue can be resolved only by an elucidation of the intricate vibronic structure of the spectrum. We investigate the vibronic coupling by means of linear-response time-dependent density functional calculations. By means of a diabatizing scheme that employs the transition densities obtained in the TDDFT calculations in many geometries around Re, we construct a Taylor series expansion in the normal coordinates of a diabatic potential energy matrix, coupling 24 excited states. The simulated vibronic structure is in good agreement with the experimental absorption spectrum after the adjustment of some of the calculated vertical excitation energies. The peculiar blurred vibronic structure of the second band, which is a very distinctive feature of the experimental spectrum, is fully reproduced in the calculations. It is caused by the double-well shape of the adiabatic energy surface along the Jahn-Teller active e mode of the allowed 1E state arising from the second 1T2 state, which exhibits a Jahn-Teller splitting into 1B2 and 1E states. We trace the double-well shape to an avoided crossing between two diabatic states with different orbital-excitation character. The crossing can be explained at the molecular orbital level from the Jahn-Teller splitting of the set of 7t2{3d(xy), 3d(xz), 3d(yz)} orbitals (the LUMO + 1), to which the excitations characterizing the diabatic states take place. In contrast to its character in the two well regions, at Re the 2(1)T2 state is not predominantly an excitation to the LUMO + 1, but has more HOMO - 1 --> LUMO (2e = {3d(x2-y2), 3d(z2)}) character. The changing character of the 2(1)T2 - 1E state along the e mode implies that the assignment of the experimental bands to single orbital transitions is too simplistic intrinsically. This spectrum, and notably the blurring of the vibronic structure in the second band, can be understood only from the extensive configurational mixing and vibronic coupling between the excited states. This solves the long-standing assignment problem of these bands.  相似文献   

12.
The results of ab initio calculations of two- and three-body dispersion coefficients for the four most important nucleic acid bases are reported. The isotropic as well as anisotropic coefficients were found by using the time-dependent Hartree-Fock approach and the aug-cc-pVDZ basis set. Single and double excitation coupled-cluster theory with noniterative treatment of triple excitations [CCSD(T)] was used to find the values of static polarizabilities which were subsequently used to estimate the values of the CCSD(T) dispersion coefficients. A comparison of these estimated CCSD(T) dispersion coefficients with coefficients found by using empirical approaches based on atomic contributions revealed that the latter are not reliable.  相似文献   

13.
Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I-(1S)+I(2P3/2)+I(2P3/2) with the yield of approximately 30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the 3Piu(0u+)<--1Sigmag+(0g+) excitation proceeds as I-(1S)+I2(X 1Sigmag+)/I2(A 3Pi1u) or I(2P3/2)+I2-(X 2Sigmau+) with the yield of approximately 60%, while that via the 1Sigmau+(0u+)<--1Sigmag+(0g+) excitation alternatively as I*(2P1/2)+I2-(X 2Sigmau+) or I-(1S)+I2(B 3Piu) with the yield of approximately 60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.  相似文献   

14.
We have developed a correction method (CV) to calculate the single- and multiphoton absorption (MPA) spectra of organic pi-conjugated systems within the equation of motion coupled-cluster method with single and double excitations (EOM-CCSD). The effects of donor/acceptor strengths on the multiphoton absorption in a series of symmetrically substituted stilbene derivatives have been reinvestigated at both the ab initio and the semiempirical intermediate neglect of differential overlap (INDO) Hamiltonian levels. Both ab initio and INDO calculations show that the electron-donating or electron-withdrawing substituents lead to enhancements of two- and three-photon absorption cross sections, more pronounced for two-photon absorption than for three-photon absorption. The ab initio calculations usually produce larger excitation energies than the semiempirical, which lead to lower MPA cross sections.  相似文献   

15.
The Renner-Teller effect in C(2)H(2)(+)(X(2)Pi(u)) has been studied by using zero kinetic energy (ZEKE) photoelectron spectroscopy and coherent extreme ultraviolet (XUV) radiation. The rotationally resolved vibronic spectra have been recorded for energies up to 2000 cm(-1) above the ground vibrational state. The C triple bond C symmetric stretching (upsilon(2)), the CCH trans bending (upsilon(4)), and the CCH cis bending (upsilon(5)) vibrational excitations have been observed. The assigned vibronic bands are 4(1)(1)(kappa(2)Sigma(u)(+))(hot band), 4(1)(0)(mu/kappa(2)Sigma (u)(-/+)), 5(1)(0)(mu/kappa(2)Sigma (g)(+/-)), and 4(2)(0)(mu(2)Pi(u)), 4(2)(0)(kappa(2)Pi(u)), 4(1)(0)5(1)(0) (mu(2)Pi(g)), 0(0)(0)(X(2)Pi(u)), and 2(1)(0)(X(2)Pi(u)). The Renner-Teller parameters, the harmonic frequencies, the spin-orbit coupling constants, and the rotational constants for the corresponding vibronic bands have been determined by fitting the spectra with energy eigenvalues from the Hamiltonian that considers simultaneously Renner-Teller coupling, vibrational energies, rotational energies, and spin-orbit coupling interaction.  相似文献   

16.
We have investigated the elusive reactive species of cytochrome P450(cam) (Compound I), the hydroxo complex formed during camphor hydroxylation, and the ferric hydroperoxo complex (Compound 0) by combined quantum mechanical/molecular mechanical (QM/MM) calculations, employing both density functional theory (DFT) and correlated ab initio methods. The first two intermediates appear multiconfigurational in character, especially in the doublet state and less so in the quartet state. DFT(B3LYP)/MM calculations reproduce the relative energies from correlated ab initio QM/MM treatments quite well, except for the splitting of the lowest A(1u)-A(2u) radical states. The inclusion of dynamic correlation is crucial for the proper ab initio treatment of these intermediates.  相似文献   

17.
The excitation spectra and molecular dynamics of furan associated with its low-lying excited singlet states 1A2(3s), 1B2(V), 1A1(V'), and 1B1(3p) are investigated using an ab initio quantum-dynamical approach. The ab initio results of our previous work [J. Chem. Phys. 119, 737 (2003)] on the potential energy surfaces (PES) of these states indicate that they are vibronically coupled with each other and subject to conical intersections. This should give rise to complex nonadiabatic nuclear dynamics. In the present work the dynamical problem is treated using adequate vibronic coupling models accounting for up to four coupled PES and thirteen vibrational degrees of freedom. The calculations were performed using the multiconfiguration time-dependent Hartree method for wave-packet propagation. It is found that in the low-energy region the nuclear dynamics of furan is governed mainly by vibronic coupling of the 1A2(3s) and 1B2(V) states, involving also the 1A1(V') state. These interactions are responsible for the ultrafast internal conversion from the 1B2(V) state, characterized by a transfer of the electronic population to the 1A2(3s) state on a time scale of approximately 25 fs. The calculated photoabsorption spectrum of furan is in good qualitative agreement with experimental data. Some assignments of the measured spectrum are proposed.  相似文献   

18.
The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)πσ? excited state with the bound (1)ππ? excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)ππ?-(1)πσ? and (1)πσ?-S(0) conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S(0), (1)ππ?, (1)πσ?) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)ππ? and (1)πσ? states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)σ/(2)π electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (ν(16a)) and ring-distortion (ν(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor.  相似文献   

19.
High-quality, ab initio potential energy functions are obtained for the interaction of bromine atoms and anions with atoms of the six rare gases (Rg) from He to Rn. The potentials of the nonrelativistic (2)Sigma(+) and (2)Pi electronic states arising from the ground-state Br((2)P)-Rg interactions are computed over a wide range of internuclear separations using a spin-restricted version of the coupled cluster method with single and double excitations and noniterative correction to triple excitations [RCCSD(T)] with an extrapolation to the complete basis set limit, from basis sets of d-aug-cc-pVQZ and d-aug-cc-pV5Z quality. These are compared with potentials derived previously from experimental measurements and ab initio calculations. The same approach is used also to refine the potentials of the Br(-)-Rg anions obtained previously [Buchachenko et al., J. Chem. Phys. 125, 064305 (2006)]. Spin-orbit coupling in the neutral species is included both ab initio and via an atomic approximation; deviations between two approaches that are large enough to affect the results significantly are observed only in the Br-Xe and Br-Rn systems. The resulting relativistic potentials are used to compute anion zero electron kinetic energy photoelectron spectra, differential scattering cross sections, and the transport coefficients of trace amounts of both anionic and neutral bromine in the rare gases. Comparison with available experimental data for all systems considered proves a very high precision of the present potentials.  相似文献   

20.
The photophysics of a prototypical cross-conjugated π-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We find that the excitation spectrum of S(1) displays extensive vibrational progressions that we identify to arise from large changes in the torsional angles of the phenyl rings upon electronic excitation. The extensive activity of the antisymmetric inter-ring torsional vibration provides conclusive evidence for a loss of symmetry upon excitation, leading to an inequivalence of the two phenyl rings. Nonresonant zero kinetic energy photoelectron spectroscopy from the ground state of the neutral molecule to the ground state of the radical cation, on the other hand, demonstrates that upon ionization symmetry is retained, and that the geometry changes are considerably smaller. Apart from elucidating how removal of an electron affects the structure of the molecule, these measurements provide an accurate value for the adiabatic ionization energy (65274 ± 1 cm(-1) (8.093 eV)). Zero kinetic energy photoelectron spectra obtained after excitation of vibronic levels in S(1) confirm these conclusions and provide us with an extensive atlas of ionic vibronic energy levels. For higher excitation energies the excitation spectrum of S(1) becomes quite congested and shows unexpected large intensities. Ab initio calculations strongly suggest that this is caused by a conical intersection between S(1) and S(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号