首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stir-bar sorptive extraction in combination with an in situ derivatisation reaction and thermal desorption–gas chromatography–mass spectrometry was successfully applied to determine parabens (methylparaben, isopropylparaben, n-propylparaben, butylparaben and benzylparaben), triclosan and methyltriclosan in water samples. This approach improves both the extraction efficiency and the sensitivity in the GC in a simple way since the derivatisation reaction occurs at the same time as the extraction procedure. The in situ derivatisation reaction was carried out with acetic anhydride under alkaline conditions. Thermal desorption parameters (cryofocusing temperature, desorption flow, desorption time, desorption temperature) were optimised using a Box–Behnken experimental design. All the analytes gave recoveries higher than 79%, except methylparaben (22%). The method afforded detection limits between 0.64 and 4.12 ng/L, with good reproducibility and accuracy values. The feasibility of the method for the determination of analytes in water samples was checked in tap water and untreated and treated wastewater.  相似文献   

2.
The headspace solid-phase micro-extraction technique with on-fibre derivatisation followed by gas chromatography-tandem mass spectrometry has been evaluated for the analysis of 1,3-dichloro-2-propanol in water. An asymmetric factorial design has been performed to study the influence of five experimental factors: extraction time and temperature, derivatisation time and temperature and pH. The best extraction performance is achieved in the headspace mode, with 5 mL stirred water samples (pH 4) containing 1.3 g of NaCl, equilibrated for 30 min at 25 °C, using divinylbenzene-carboxen-polydimethylsiloxane as the fibre coating. On-fibre derivatisation has been used for the first time with 50 μL of bis(trimethylsilyl)trifluoroacetamide at 25 °C during 15 min, leading to effective yields. The proposed method provides high sensitivity, good linearity and repeatability (relative standard deviation of 5.1% for 10 ng mL−1 and n = 5). The limits of detection and quantification were 0.4 and 1.4 ng mL−1, respectively. Analytical recoveries obtained for different water samples were approx. 100%.  相似文献   

3.
Dispersive liquid—liquid microextraction coupled with high-performance liquid chromatography—diode-array detection was applied for the extraction and determination of 11 priority pollutant phenols in wastewater samples. The analytes were extracted from a 5-mL sample solution using a mixture of carbon disulfide as the extraction solvent and acetone as the dispersive solvent. After extraction, solvent exchange was carried out by evaporating the solvent and then reconstituting the residue in a mixture of methanol–water (30:70). The influences of different experimental dispersive liquid—liquid microextraction parameters such as extraction solvent type, dispersive solvent type, extraction and dispersive solvent volume, salt addition, and pH were studied. Under optimal conditions, namely pH 2, 165-μL extraction solvent volume, 2.50-mL dispersive solvent volume, and no salt addition, enrichment factors and limits of detection ranged over 30–373 and 0.01–1.3 μg/L, respectively. The relative standard deviation for spiked wastewater samples at 10 μg/L of each phenol ranged between 4.3 and 19.3% (n = 5). The relative recovery for wastewater samples at a spiked level of 10 μg/L varied from 65.5 to 108.3%.  相似文献   

4.
Summary Gas chromatography with electron capture detection (GC-ECD) for the analysis of methylmercury choloride (MMC) using a packed column and a capillary column has been investigated. The columns were 2% silicone OV-227 Uniport HP glass column and a DB-17 capillary column, each pretreated by about ten injections of HBr-methanol solution. MMC was separated as a sharp peak by the HBr-teated column and determined directly by ECD without derivatisation. The mass spectrum of MMC indicated that halide exchange from chloride to bromide proceeded during separation. The minimum detectable concentrations were approximately 5 ng mL−1 on the packed column, and 2 ng mL−1 on the capillary. Calibration curves showed good linearity between 5–200 ng mL−1 for the packed column, and between 2–200 ng mL−1 for the capillary. Relative standard deviations of peak areas were 0.95% for the packed column and 0.43% for the capillary at the level of 100 ng mL−1 in both cases. The column treatment technique was applicable to determination of methylmercury in fish samples.  相似文献   

5.
This paper describes a fully automated on-line method combining in-tube solid-phase microextraction (SPME) in which sample clean-up and enrichment are conducted through an open tubular fused-silica capillary column and high-performance liquid chromatography (HPLC)/tandem mass spectrometry (MS/MS) detection for the determination of six butyrophenone derivatives (moperone, floropipamide, haloperidol, spiroperidol, bromperidol, and pimozide) in human plasma samples. The six butyrophenones were extracted by repeatedly aspirating and dispensing plasma sample solutions on a DB-17 capillary column (60 cm × 0.32 mm i.d., film thickness 0.25 μm). The analytes retained on the inner surface of the capillary column were then eluted into an acetonitrile-rich mobile phase using a gradient separation technique. Extraction efficiencies ranged from 12.7% to 31.8% for moperone, spiroperidol, and pimozide, and from 1.08% to 4.86% for floropipamide, haloperidol, and bromperidol. The regression equations for all compounds showed excellent linearity, ranging from 0.05 to 50 ng/0.1 mL of plasma, except for moperone and spiroperidol (0.01 to 50 ng/0.1 mL). The limits of detection and quantification in plasma for each drug were 0.03–0.2 and 0.1–0.5 ng/mL, respectively. The intra- and inter-day coefficients of variation for all compounds in plasma were not greater than 13.7%.  相似文献   

6.
This work describes the development of flow analysis microsystems with integrated fluorimetric detection cells. Channels (width of 300–540 μm and depth of 200–590 μm) were manufactured by deep-UV lithography in urethane–acrylate (UA) resin. Plastic optical fibers (diameter of 250 μm) were coupled to a 2.0-mm-long detection channel in order to guide the excitation radiation from an LED (470 nm) and collect the emitted radiation at a right angle towards a photomultiplier. A single-line miniaturized system, with a total internal volume of 10.4 μL, was evaluated by means of standard fluorescein solutions (0.53–2.66 μmol L−1, pH 8.5). The analytical signals presented a linear relationship in the concentration range studied, with a relative standard deviation of 1.9% (n = 5), providing a detection limit of 0.37 μmol L−1 and an analytical frequency of 60 samples/h, using a flow rate of 60 μL min−1. Optical microscopy images and videos acquired in real time for the hydrodynamic injection of 130 and 320 nL of sample solutions indicated the good performance of the proposed sampling strategy. Another microsystem with a total internal volume of 38 μL was developed, incorporating a confluence point for two solutions. This device was applied to the determination of the total concentration of Ca2+ and Mg2+ in commercial mineral waters using the calcein method. Microscopy images and videos demonstrated the mixing efficiency of the solutions in the microchannels. A linear relationship was observed for the analytical signal in the Ca2+ concentration range from 25 to 125 μmol L−1, with relative standard deviations of 3.5%. The analysis of mineral waters with the proposed system provided results that did not differ significantly from those obtained by the EDTA titration method at a confidence level of 95%. These results demonstrate the viability of developing micro flow injection systems with an integrated fluorimetric detection cell.   相似文献   

7.
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, infects approximately one third of the current world population. Isoniazid is one of the most frequently used first-line anti-TB drugs. In this study, we developed a sensitive cation-selective exhaustive injection–sweeping–micellar electrokinetic chromatography method (CSEI-Sweep-MEKC) for analyzing isoniazid in human plasma. Parameters including acetonitrile (ACN) percentage in the separation buffer; the injection time, and concentration of the high-conductivity buffer; sodium dodecyl sulfate (SDS) concentration; phosphate concentration in the sample matrix; and the sample injection time were all optimized to obtain the best analytical performance. The optimal background electrolyte comprised 50 mM phosphate buffer, 100 mM SDS, and 15% ACN. Non-micelle background electrolyte, containing 75 mM phosphate buffer and 15% ACN, was first injected into the capillary, followed by a short plug of 200 mM phosphate (high-conductivity buffer). Run-to-run repeatability (n = 3) and intermediate precision (n = 3) of peak area ratios were found to be lower than 8.7% and 11.4% RSD, respectively. The accuracy of the method was within 98.1–106.9%. The limit of detection of isoniazod in human plasma was 9 ng mL−1. Compared with conventional MEKC, the enhancement factor of the CSEI-Sweep-MEKC method was 85 in plasma samples. The developed method was successfully used to determine isoniazid concentration in patient plasma. The results demonstrated that CSEI-Sweep-MEKC has the potential to analyze isoniazid in human plasma for therapeutic drug monitoring and clinical research.  相似文献   

8.
The analysis of organic pollutants in environmental water samples requires a pre-concentration step. Pre-concentration techniques such as stir bar sorptive extraction (SBSE) have gained popularity since they minimise the use of toxic organic solvents and can be considered as green analytical techniques. Similar to other pre-concentration techniques, one of the problems when SBSE is used is the matrix effect, which often occurs during the analysis of environmental water samples such as estuarine or wastewater samples. The present work studied the matrix effect during SBSE coupled to in-tube derivatisation–thermal desorption (TD)–gas chromatography–mass spectrometry for the determination of several endocrine disruptor compounds, such as alkylphenols, bisphenol A, estrogens and sterols, in environmental water samples, after optimisation of the major variables affecting the determination. Variables such as the addition of methanol or an inert salt to the donor phase, the extraction temperature, the volume of the donor phase, the stirring rate and the extraction time were studied during the SBSE optimisation. In the case of the in-tube derivatisation and TD step, the volume of the derivatisation reagent (N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA + 1% TMCS)) and the cryo-focusing temperature were fixed (2 μL and −50 °C, respectively) according to a consensus between maximum signal and optimal operation conditions. Good apparent recovery values (78–124%) were obtained for most of the analytes in Milli-Q water, except for 4-tert-octylphenol (4-tOP), which showed apparent recovery values exceeding 100%. Precision (n = 4) was in the 2–27%, and method detection limits were in the low nanogrammes per litre level for most of the analytes studied. The matrix effect was studied using two different approaches. On the one hand, Milli-Q water samples were spiked with humic acids, and apparent recovery values were studied with and without correction with the corresponding deuterated analogue. On the other hand, estuarine water and wastewater samples were spiked with known concentrations of target analytes, and apparent recoveries were studied as explained above. In general, the matrix effect could be corrected with the use of deuterated analogues, except for 4-tOP and nonylphenols for which [2H4]-n-nonylphenol did not provide good corrections.  相似文献   

9.
A procedure for the determination of seven parabens (esters of 4-hydroxybenzoic acid), including the distinction between branched and linear isomers of propyl- and butyl-parabens and triclosan in water samples, was developed and evaluated. The procedure includes in-sample acetylation-non-porous membrane-assisted liquid–liquid extraction and large volume injection–gas chromatography–ion trap–tandem mass spectrometry. Different derivatisation strategies were considered, i.e. post-extraction silylation with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide and in situ acylation with acetic anhydride (Ac2O) and isobutylchloroformate. Moreover, acceptor solvent and the basic catalyser of the acylation reaction were investigated. Thus, in situ derivatisation with Ac2O and potassium hydrogenphosphate (as basic catalyser) was selected. Potassium hydrogenphosphate overcomes some drawbacks of other basic catalysers, e.g. toxicity and bubble formation, while leads to higher responses. Subsequently, other experimental variables affecting derivatisation–extraction yield such as pre-stirring time, salt addition and volume of Ac2O were optimised by an experimental design approach. Under optimised conditions, the proposed method achieved detection limits from 0.1 to 1.4 ng L−1 for a sample volume of 18 mL and extraction efficiencies, estimated by comparison with liquid–liquid extraction, between 46% (for methyl- and ethyl-parabens) and 110% (for benzylparaben). The reported sample preparation approach is free of matrix effects for parabens but affected for triclosan with a reduction of ≈ 40% when wastewater samples are analysed; therefore, both internal and external calibration can be used as quantification techniques for parabens, but internal standard calibration is mandatory for triclosan. The application of the method to real samples revealed the presence of these compounds in raw wastewater at concentrations up to 26 ng mL−1, the prevalence of the linear isomer of propylparaben (n-PrP), and the coexistence of the two isomers of butylparaben (i-BuP and n-BuP) at similar levels.  相似文献   

10.
The use of a novel electrophoric derivatisation reagent, o-(pentafluorobenzyloxycarbonyl)-benzoyl chloride, for the quantitative determination of methylphenidate in plasma is described. The drug can be quantitatively measured down to 72 pg/mL plasma using only 250 μL of sample due to the extraordinary sensitivity of the derivatives under negative ion chemical ionisation mass spectrometry. Plasma samples were made alkaline with carbonate buffer and treated with extraction solvent n-hexane and reagent solution for 30 min, which, after concentration, was measured by GC-NICI-MS. The method is rapid as extraction and derivatisation occur in one single step. A stable isotope-labelled internal standard was used and its synthesis described. Full validation data are given to demonstrate the usefulness of the assay, including specificity, linearity, accuracy and precision, long-term stability, short-term stability, freeze–thaw stability, stock solution stability, autosampler stability, aliquot analysis, robustness, matrix effect, and prospective analytical batch size accuracy. The method has been successfully applied to pharmacokinetic profiling of the drug after oral application.  相似文献   

11.
《Electrophoresis》2018,39(14):1754-1762
A novel and fully automated sequential injection analysis manifold coupled to a capillary electrophoresis apparatus with amperometric detection, is described. The sequential injection manifold was isolated from the high voltage by inserting an air plug into the circuit. Small buffer reservoirs were used to avoid the need to pump fresh buffer to the interface during the electrophoretic separation. No decoupling device was used to mitigate the interference from the high voltage electric field, instead the potential shift induced by the separation voltage, was accounted for. The new hydrodynamic injection method presented is based on the overpressure created in the circuit when a pinch valve is closed for a predetermined time. The injection method yields RSD values of peak height and area below 2.55 and 1.82%, respectively, at different durations of valve closure (n = 5). The capillary and working electrode alignment was achieved by adapting a commercial available capillary union. When the electrode was replaced, the alignment method proved to be very reliable, yielding RSD values of peak height and area lower than 2.64 and 2.08%, respectively (n = 8). Using this system with a gold microelectrode, dopamine, and epinephrine could be quantified within the concentration range of 1–500 μM and detected at a concentration of 0.3 μM. The methods here presented could be applied for the development of new capillary electrophoresis systems with amperometric detection and/or to the design of fully automated systems for online process monitoring purposes.  相似文献   

12.
A new, simple, and efficient approach for on-column surface-enhanced Raman scattering (SERS) detection in capillary electrophoresis (CE) is reported. A ∼50-μm SERS substrate spot was prepared by laser-induced growth of silver particles in the 100-μm inner diameter CE capillary window or in a flow cell consisting of a 250-μm inner diameter fused silica capillary connector. For this purpose, the Raman laser was focused by a 20× objective into the detection window filled with a 0.5 mM silver nitrate and 10 mM citrate buffer solution. During the CE runs, the silver substrate spot was formed in a few seconds after the analyte injection, hence the analytes adsorbed sequentially to the silver surface when the detection window was reached, followed by desorption from the silver surface and continuing the electrophoretic migration to the capillary end. Thus, beyond migration time, valuable molecular specific information was delivered by the SERS spectra. Accurate separations and high-intensity SERS spectra are shown by CE-SERS time-dependent 3D electropherograms for the analytes rhodamine 6G, 4-(2-pyridylazo)resorcinol (PAR), PAR complex with Cu(II) and methylene blue at 0.25–25 ppm concentrations, by using 1.4–3.6 mW HeNe laser power and an acquisition time of 5 s for each spectrum. Before and after each analyte passes the detection window, clean background spectra were recorded and no memory effects perturbed the SERS detection. The silver substrate is characterized by a fast preparation rate, good reproducibility, a preparation success rate of over 95% and no mentionable influence on the electrophoretic migration time, the CE-SERS and CE-UV electropherograms being in good agreement. The successful coupling of CE and on-column SERS detection opens new perspectives for monitoring CE separations.  相似文献   

13.
This article reports a new procedure for the direct determination of faecal sterols coprostanol and cholesterol in wastewater samples as tracers of human sewage contamination. The method combines in-tube solid-phase microextraction (IT-SPME) for analyte enrichment and capillary liquid chromatography (LC) for separation with diode array detection for identification and quantification. A titania-based polymeric capillary column and a conventional octadecyl silica (ODS) capillary column were evaluated and compared for their ability to separate the analytes. The titania-based column allowed the separation of the analytes in much shorter chromatographic times and with better chromatographic profiles, which in turn resulted in better detectability. In addition, IT-SPME allowed the direct injection into the chromatographic system of sample volumes as large as 200 μL, thus making unnecessary off-line clean-up and concentration steps. In such a way, the tested compounds could be directly analysed in less than 10 min, the limits of detection (LODs) being 10 and 1.2 μg/L for coprostanol and cholesterol, respectively. The reliability of the proposed method was tested by processing several wastewater samples.  相似文献   

14.
Offline dispersive liquid‐liquid microextraction combined with online pressure‐assisted electrokinetic injection was developed to simultaneously enrich seven phenolic compounds in water samples, followed by determination using capillary electrophoresis, namely phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol. Several parameters affecting separation performance of capillary electrophoresis and the enrichment efficiency of pressure‐assisted electrokinetic injection and dispersive liquid‐liquid microextraction were systematically investigated. Under the optimal conditions, seven phenolic compounds were completely separated within 14 min and good enrichment factors were obtained of 61, 236, 3705, 3288, 920, 86, and 1807 for phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, respectively. Good linearity was attained in the range of 0.1–200 μg/L for 2,4‐dichlorophenol, 0.5–200 μg/L for 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, as well as 1–200 μg/L for phenol, with correlation coefficients (r) over 0.9905. The limits of detection and quantification ranging from 0.03–0.28 and 0.07–0.94 μg/L were attained. This two step enrichment method was potentially applicable for the rapid and simultaneous determination of phenolic compounds in water samples.  相似文献   

15.
The allantoin/uric acid (All/UA) ratio and malondialdehyde (MDA) plasma levels have been proposed as important markers for monitoring oxidation triggered by the action of free radicals (FR). Here, we describe an easy field amplified sample injection capillary electrophoresis method with UV detection for the separation and quantification of All, UA, and free MDA in human plasma. The plasma samples were simply filtered through centrifugation membrane tubes for protein elimination and directly injected on a capillary without complex cleanup and/or sample derivatization procedures. The use of a run buffer composed of 300 mmol/L sodium borate at pH 10 with 50 mmol/L of N-methyl-d-glucamine and an overimposed pressure/voltage of 0.1 psi during the electrophoretic run allows basline resolution of the analytes within 17 min. The electrokinetic injection allows a detection limit of 15 nmol/L for All, 20 nmol/L for UA and 10 nmol/L for MDA in a plasma sample, thus significantly improving the LOD of previous described methods based on capillary electrophoresis. Precision tests indicate a good repeatability of our method both for migration times (CV = 1.85%) and areas (CV = 2.87%). Moreover, a good reproducibility of intra- and inter-assay tests was obtained (CV = 4.63% and CV = 6.59% respectively). The suitability of the method was tested by measuring analyte levels in 40 healthy volunteers.  相似文献   

16.
In-line solid-phase extraction–capillary electrophoresis coupled with mass spectrometric detection (SPE–CE–MS) has been used for determination of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), codeine (COD), hydrocodeine (HCOD), and 6-acetylmorphine (6AM) in urine. The preconcentration system consists of a small capillary filled with Oasis HLB sorbent and inserted into the inlet section of the electrophoresis capillary. The SPE–CE–MS experimental conditions were optimized as follows: the sample (adjusted to pH 6.0) was loaded at 930 mbar for 60 min, elution was performed with methanol at 50 mbar for 35 s, 60 mmol L−1 ammonium acetate at pH 3.8 was used as running buffer, the separation voltage was 30 kV, and the sheath liquid at a flow rate of 5.0 μL min−1 was isopropanol–water 50:50 (v/v) containing 0.5% acetic acid. Analysis of urine samples spiked with the four drugs and diluted 1:1 (v/v) was studied in the linear range 0.08–10 ng mL−1. Detection limits (LODs) (S/N = 3) were between 0.013 and 0.210 ng mL−1. Repeatability (expressed as relative standard deviation) was below 7.2%. The method developed enables simple and effective determination of these drugs of abuse in urine samples at the levels encountered in toxicology and doping.  相似文献   

17.
This paper describes determination of the deoxynivalenol and ergosterol in samples from different varieties of barley and, consequently, malt produced from this barley. In total, 20 samples of barley and 20 samples of barley malt were analyzed. The alkaline hydrolysis with consequent extraction into hexane was applied to obtain the ergosterol from cereals. Extraction to acetonitrile/water and subsequent solid-phase extraction (SPE) were used for deoxynivalenol. The determination of the samples was performed on high-performance liquid chromatography using UV detection (ergosterol) and mass spectrometric detection (deoxynivalenol). The influence of the malting process on the production of two compounds of interest was assessed from obtained results. Ergosterol concentration ranged 0.88–15.87 mg/kg in barley and 2.63–34.96 mg/kg in malt, where its content increased to 95% compared to samples before malting. The malting process was observed as having a significant effect on ergosterol concentration (P = 0.07). The maximum concentration of deoxynivalenol was found to be 641 μg/kg in barley and 499 μg/kg in malt. Its concentration was lower than the legislative limit for unprocessed cereals (1,250 μg/kg). The statistic effect of the malting process on deoxynivalenol production was not found. Linear correlation between ergosterol and deoxynivalenol content was found to be very low (barley R = 0.02, malt R = 0.01). The results revealed that it is not possible to consider the ergosterol content as the indicator of deoxynivalenol contamination of naturally molded samples.  相似文献   

18.
Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L−1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min−1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L−1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%.  相似文献   

19.
A novel small-volume fiber-optic evanescent-wave absorption sensor based on the Griess–Ilosvay reaction has been developed and evaluated for nitrite determination. The sensor was constructed by inserting a decladded optical fiber into a transparent capillary to form an annular column microchannel. The Evanescent wave (EW) field produced on the optical fiber core surface penetrated into the surrounding medium and interacted with the azo dye, which was generated by the reaction of nitrite and nitrite-sensitive reagents. The detector was designed to be parallel to the axis of the optical fiber. The defined absorbance was linear with the concentration of nitrite in the range from 0.05 to 10 mg L−1, and the detection limit was 0.02 mg L−1 (3σ) with the relative standard deviation (RSD) of 2.6% (n = 8). The present sensor was successfully used to determine nitrite in real samples of mineral water, tap water, rain water, and seawater. The results were consistent with the data obtained by standard spectrophotometric method, showing potential of the proposed sensor for practical application.   相似文献   

20.
A simple, sensitive and continuous on-line stacking technique using head-column (HC)-field amplified sample injection (FASI) and sweeping was developed by combination of flow injection with micellar electrokinetic chromatography. Berberine, palmatine and jatrorrhizine were selected as model mixture to demonstrate this stacking method. Based on the characteristic of a 16-way injection valve (16-V), a sample was injected electrokinetically into a capillary after the introduction of a plug of water. Under optimum conditions, 64–86-fold improvement in the detection sensitivity was obtained for the analytes and the sample throughput can reach up to 24 h−1 using the background electrolyte containing 240 mM ammonium acetate (pH 4.7), 30% (v/v) ethanol, and 2% (v/v) polyoxyethylene sorbitan monolaurate (Tween 20). The repeatabilities (n = 4) reached relative standard deviation values of 1.2, 2.7 and 3.1% for the peak areas and 1.6, 3.3 and 3.8% for peak heights of berberine, palmatine and jatrorrhizine, respectively. The limit of detection for the berberine, palmatine and jatrorrhizine was found to be 27, 26, 22 ng mL−1 (S/N = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号