首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu-exchanged Y zeolite was investigated in order to determine the location of the copper cations relative to the zeolite framework and to determine which Cu cations are active for the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Cu-Y zeolite was prepared by vapor-phase exchange of H-Y with CuCl. The oxidation state, local coordination, and bond distances of Al and Cu were determined using Al K-edge and Cu K-edge X-ray absorption spectroscopy (XAS). Complimentary information was obtained by H2 temperature-programmed reduction and by in-situ infrared spectroscopy. Cu-Y has a Cu/Al ratio of unity and very little occluded CuCl. The average Al-O and Al-Cu bond distances are 1.67 angstroms and 2.79 angstroms, respectively, and the average Cu-O and Cu-Si(Al) bond distances are 1.99 angstroms and 3.13 angstroms, respectively. All of the Cu exchanged is present as Cu+ in sites I', II, and III'. Cu-Y is active for the oxidative carbonylation of methanol, and at low reactant contact time produces DMC as the primary product. With increasing reactant contact time, DMC formation decreases in preference to the formation of dimethoxy methane (DMM) and methylformate (MF). The formation of DMM and MF is attributed to the hydrogenation of DMC and the hydrogenolysis of DMM, respectively. Observation of the catalyst under reaction conditions reveals that most of the copper cations remain as Cu+, but some oxidation of Cu+ to Cu2+ does occur. It is also concluded that only those copper cations present in site II and III' positions are accessible to the reactants, and hence are catalytically active. The dominant adsorbed species on the surface are methoxy groups, and adsorbed CO is present as a minority species. The relationship of these observations to the kinetics of DMC synthesis is discussed.  相似文献   

2.
In situ Al K edge XANES spectroscopy shows that the fraction of octahedrally coordinated aluminum in amorphous silica-alumina (ASA) and ultrastable Y zeolite (USY) decreases with increasing temperature under vacuum. In H-USY, about 10% of the aluminum remains octahedrally coordinated at 673 K, while, in ASA, virtually all the octahedrally coordinated aluminum is converted to tetrahedral coordination. In crystalline nonsteamed protonic zeolites, the fraction of octahedrally coordinated aluminum decreased to zero at 300 K. This is ascribed to the greater flexibility of the amorphous silica-alumina network in hosting water molecules and to the high concentration of silanol groups, which stabilize the hydrogen bonds. A large fraction of the nonframework aluminum in USY is amorphous silica-alumina.  相似文献   

3.
Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 ?, and MXAN, 1.99 ± 0.03 ?. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 ? (EXAFS) or 2.14 ± 0.06 ? (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 ? (EXAFS) or 3.0 ± 0.1 ? (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 ? that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 ? axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions.  相似文献   

4.
After outlining the chemical features and properties which make zeolites such an important group of catalysts and sorbents, the article explains how high-resolution solid-state NMR with magic-angle spinning reveals numerous new insights into their structure. 29Si-MAS-NMR readily and quantitatively identifies five distinct Si(OAl)n(OSi)4-n structural groups in zeolitic frameworks (n = 0, 1,….4), corresponding to the first tetrahedral coordination shell of a silicon atom. Many catalytic and other chemical properties of zeolites are governed by the short-range Si, Al order, the nature of which is greatly clarified by 29Si-MAS-NMR. It is shown that, as expected from Pauling's electroneutrality principle and Loewenstein's rule, both in zeolite X and in zeolite A (with Si/Al = 1.00) there are no ? Al? O? Al? linkages. In zeolite A and zeolite X with Si/Al = 1.00 there is strict alternation of Si and Al on the tetrahedral sites. Ordering models for Si/Al ratios up to 5.00 (in zeolite Y) may also be evaluated by a combination of MAS-NMR experiments and computational procedures. 29Si-MAS-NMR spectra reveal the presence of numerous crystallographically distinct Si(OSi)4 sites in silicalite/ZSM-5, suggesting that the correct space group for these related porosilicates is not Pnma. 27Al-MAS-NMR clearly distinguishes tetrahedrally and octahedrally coordinated aluminum, proving that, contrary to earlier claims, Al in silicalite is tetrahedrally substituted within the framework. In combination, 29Si- and 27Al-MAS-NMR is a powerful tool for monitoring the course of solid-state processes (such as ultrastabilization of synthetic faujasites) and of gas-solid reactions (dealumination of zeolites with silicon tetrachloride vapor at elevated temperatures). They also permit the quantitative determination of framework Si/Al ratios in the region 1.00 < Si/Al < 10 000. Since most elements in the periodic table may be accommodated within zeolite structures, either as part of the exchangeable cations or as building units of the anionic framework, there is immense scope for investigation by MAS-NMR and its variants (cross-polarization, multiple pulse and variable-angle spinning) of bulk, surface and chemical properties. Some of the directions in which future research in zeolite science may proceed are adumbrated.  相似文献   

5.
The solution structure of Cu(II) in 4 M aqueous ammonia, [Cu(amm)](2+), was assessed using copper K-edge extended X-ray absorption fine structure (EXAFS) and Minuit XANes (MXAN) analyses. Tested structures included trigonal planar, planar and D2d -tetragonal, regular and distorted square pyramids, trigonal bipyramids, and Jahn-Teller distorted octahedra. Each approach converged to the same axially elongated square pyramid, 4 x Cu-Neq=2.00+/-0.02 A and 1 x Cu-Nax=2.16+/-0.02 A (EXAFS) or 2.20+/-0.07 A (MXAN), with strongly localized solvation shells. In the MXAN model, four equatorial ammonias averaged 13 degrees below the Cu(II) xy-plane, which was 0.45+/-0.1 A above the mean N4 plane. When the axial ligand equilibrium partial occupancies of about 0.65 ammonia and 0.35 water were included, EXAFS modeling found Cu-Lax distances of 2.16 and 2.31 A, respectively, reproducing the distances found in the crystal structures of [Cu(NH3)5](2+) and [Cu(NH3)4(H2O)](2+). A transverse axially localized solvent molecule was found at 2.8 A (EXAFS) or 3.1 A (MXAN). Six second-shell solvent molecules were also found at about 3.4+/-0.01 (EXAFS) or 3.8+/-0.2 A (MXAN). The structure of Cu(II) in 4 M pH 10 aqueous NH 3 may be notationally described as {[Cu(NH 3)4.62(H2O)0.38](solv)}(2+).6solv, solv=H2O, NH 3. The prominent shoulder and duplexed maximum of the rising K-edge XAS of [Cu(amm)](2+) primarily reflect the durable and well-organized solvation shells, not found around [Cu(H2O)5](2+), rather than two-electron shakedown transitions. Not accounting for solvent scattering thus may confound XAS-based estimates of metal-ligand covalency. [Cu(amm)](2+) continues the dissymmetry previously found for the solution structure of [Cu(H2O)5](2+), again contradicting the rack-bonding theory of blue copper proteins.  相似文献   

6.
用XPS考察了USY和FSY超稳Y型沸石及其起始原料NH_4Y沸石的表面组成,并结合Ar~+刻蚀技术与其体相组成进行了比较。结果表明,NH_4Y沸石的铝分布基本均匀一致,经超稳化处理后,沸石表面组成发生了很大的变化。用(NH_4)_2SiF_6液相脱铝补硅法制备的FSY表面呈缺铝特征,其表面铝原子浓度比体相低8~10%;而用传统水热法制备的USY具有典型的富铝表面,其表面铝原子浓度比体相高30%左右。USY表面富铝主要是由于USY“次表面”(Subsurface)附近的非骨架铝类迁移到表面所致。内层的非骨架铝类在常规水热超稳处理条件下一般则很难迁移,仍然留有在USY晶体内部。  相似文献   

7.
不用有机胺为模板剂,在碱性介质中采用水热合成法成功地合成了[Fe]ZSM-5分子筛.用X射线衍射、透射电镜、红外光谱、顺磁共振谱、X射线光电子能谱和穆斯堡尔谱等对其结构进行了表征,结果表明,Fe原子进入了分子筛骨架,并处于四面体的配位环境.在由甲醇转化为汽油的过程中,以本文合成的[Fe]ZSM-5与用有机胺为模板剂合成的[Fe]ZSM-5分子筛为催化剂相比,其活性和选择性几乎相同,且都比通常的H[Al]ZSM-5好,C5组分以上的选择性大于80%,且芳烃(包括脂环烃)和异构烃的含量达75%以上.  相似文献   

8.
27Al spin-echo, high-speed MAS (nu(rot) = 30 kHz), and MQMAS NMR spectroscopy in magnetic fields of B0 = 9.4, 14.1, and 17.6 T were applied for the study of aluminum species at framework and extra-framework positions in non-hydrated zeolites Y. Non-hydrated gamma-Al2O3 and non-hydrated aluminum-exchanged zeolite Y (Al,Na-Y) and zeolite H,Na-Y were utilized as reference materials. The solid-state 27Al NMR spectra of steamed zeolite deH,Na-Y/81.5 were found to consist of four signals. The broad low-field signal is caused by a superposition of the signals of framework aluminum atoms in the vicinity of bridging hydroxyl protons and framework aluminum atoms compensated in their negative charge by aluminum cations (delta(iso) = 70 +/- 10 ppm, C(QCC) = 15.0 +/- 1.0 MHz). The second signal is due to a superposition of the signals of framework aluminum atoms compensated by sodium cations and tetrahedrally coordinated aluminum atoms in neutral extra-framework aluminum oxide clusters (delta(iso) = 65 +/- 5 ppm, C(QCC) = 8.0 +/- 0.5 MHz). The residual two signals were attributed to aluminum cations (delta(iso) = 35 +/- 5 ppm, C(QCC) = 7.5 +/- 0.5 MHz) and octahedrally coordinated aluminum atoms in neutral extra-framework aluminum oxide clusters (delta(iso) = 10 +/- 5 ppm, C(QCC) = 5.0 +/- 0.5 MHz). By chemical analysis and evaluating the relative solid-state 27Al NMR intensities of the different signals of aluminum species occurring in zeolite deH,Na-Y/81.5 in the non-hydrated state, the aluminum distribution in this material was determined.  相似文献   

9.
Hollow ZSM-5 zeolites of size below one micrometer can be produced by desilication of crystals with aluminium zoning. The parent crystals have a core–shell structure: the core part has nearly no aluminium, whereas the aluminium content in the shell increases when extending to exterior surface. Transmission electron microscopy confirmed the preservation of the crystalline shell after base leaching, but could not identify its subtle change. An increase of the Si/Al ratio of the surface was detected upon leaching the parent material to form the hollow zeolite by using ambient pressure X-ray photoelectron spectroscopy and infrared spectroscopy of substituted alkylpyridines. 27Al MAS NMR showed that base leaching results in a reduced percentage of distorted tetrahedrally coordinated aluminium. The reprecipitation of dissolved species occurs and tetrahedrally coordinated tin atoms can thus be introduced to the shell framework. Overall, the formation of hollow ZSM-5 zeolites by desilication involves not only the removal of silicon-rich core, but also a reduced percentage of exterior aluminium-related acid sites, which should be considered while using hollow zeolites in acid-catalyzed reactions.  相似文献   

10.
The structure of iron and managanese ions substituted in the framework of nanoporous AlPO-5 is determined by ex situ and in situ X-ray absorption spectroscopy. Fe K-edge XANES and EXAFS studies clearly indicate that iron ions are present as Fe(III) in octahedral coordination in the assynthesised material and tetrahedral coordination in the calcined material in both pure FeAlPO-5 and FeMnalPO-5. XANES and EXAFS results also indicate that reaction with hydrogen peroxide causes the removal of Fe(III) ions from the framework. Mn K-edge XANES and EXAFS of FeMnAlPO-5 samples indicate that Mn(II) ions are present in the framework, tetrahedrally coordinated, in the as-synthesised material but upon calcination it is found that the Mn(II) ions are removed from the framework, suggesting a different synthesis strategy is necessary to stabilise the Mn(II) ions in the framework simultaneously with Fe(III) ions.  相似文献   

11.
The structures of metal-thiolate clusters in Zn(7)-MT, Cd(7)-MT, Cu(12)-MT, Ag(12)-MT, and Ag(17)-MT from rabbit liver have been investigated by sulfur K-edge X-ray absorption spectroscopy (XAS). In addition to providing metal-cysteinyl sulfur bond lengths, the sulfur K-edge EXAFS data provide the first direct evidence for mixtures of bridging and terminal sulfurs in Cu-MT and Ag-MT. The Zn-S and Cd-S bond lengths for tetrahedrally coordinated Zn(4)(SPh)(10)(2-) and Cd(4)(SPh)(10)(2-) compounds obtained from sulfur K-edge EXAFS data are 2.35 +/- 0.03 and 2.52 +/- 0.02 ?, respectively. Zn-S and Cd-S bond distances of 2.34 +/- 0.03 ? for Zn(7)-MT and 2.54 +/- 0.02 ? for Cd(7)-MT, respectively, calculated from sulfur K-edge EXAFS measurements, are consistent with the previously reported results from metal K-edge EXAFS data. Analysis of the sulfur K-edge EXAFS data for Cu(12)-MT indicates that Cu(I) is trigonally coordinated to sulfurs at a distance of 2.25 +/- 0.01 ?. Significant changes in CD spectra observed between Ag(12)-MT 1 and Ag(17)-MT 1 indicate that the modification of the three-dimensional structure occurs when Ag(17)-MT 1 is formed from Ag(12)-MT 1 as Ag(I) is added to the Ag(12)-MT 1. The Ag-S bond distances of 2.45 +/- 0.02 and 2.44 +/- 0.03 ? in Ag(1)(2)-MT 1 and Ag(1)(7)-MT 1, respectively, calculated from the sulfur K-edge EXAFS measurements, lead us to conclude that the Ag(I) in both Ag(1)(2)-MT 1 and Ag(1)(7)-MT 1 is digonally coordinated by thiolates. The number of metals bonded to sulfur in both model compounds and metal-containing metallothioneins is estimated from sulfur K-edge EXAFS measurements to be in the range 1.2-1.7, depending on the fraction of bridging sulfurs present in compounds. Unlike the spectral data recorded during Cu(I) binding, where sharp changes take place past 12 Cu(I), the CD data for Ag-MT 1 show little variation over the entire range of Ag(I):MT molar ratios. This result, established by both low- and high-energy optical methods, suggests that the three-dimensional structure of the metal-binding sites in metallothioneins is strongly influenced by the fraction of bridging sulfur. This analysis is the first to provide direct support for the presence of a clustered Ag-S structure for the Ag(17)-MT 1 species. These data also suggest that the structures in Ag(I) and Cu(I) metallothioneins are probably quite different.  相似文献   

12.
The objective of the presented study was to investigate the adsorption of Cu, Co, Mn, Zn, Cd and Mn on A-type zeolite. The isotherms for adsorption of metals from their nitrates were registered. The following adsorption constants K of metals were found: 162,890, 124,260, 69,025, 16,035, 10,254, and 151 [M(-1)] for Cu, Co, Mn, Zn, Cd, and Ni, respectively, for the concentration range 10(-4)-10(-3) M. On the other hand, the investigation of pH influence on the distribution constants of metals showed that the adsorption of metals proceeds essentially through an ion-exchange process, surface hydrolysis, and surface complexation. The supplementary results from DRIFT, scanning electron microscopy, and X-ray diffraction methods confirmed the presumption about the possible connection between the electronic structure of divalent ions and their adsorption behavior, showing that ions with d5 and d10 configurations such as Mn2+, Zn2+, Cd2+, with much weaker hydrolytic properties than Cu2+ and Ni2+, strongly interact with the zeolite framework and therefore their affinity to the zeolite phase is much stronger when compared with that of the Ni2+ ion, but at the same time not as strong as the affinity of the Cu2+ ion, the latter forming a new phase during the interaction with zeolite framework. For Zn2+, during inspection of the correlation between the proton concentration H/Al and zinc concentration Zn/Al on the zeolite surface, the formation of the surface complex [triple bond]S-OZn(OH) was proposed. A correlation between the heterogeneity of proton concentrations H/Al on Me-zeolite surfaces and the hydrolysis constants pKh of Me2+ ions was found.  相似文献   

13.
Adsorption and chemisorption of H2 in mordenite is studied using ab initio density functional theory (DFT) calculations. The geometries of the adsorption complex, the adsorption energies, stretching frequencies, and the capacity to dissociate the adsorbed molecule are compared for different active sites. The active centers include a Br?nsted acid site, a three-coordinated surface Al site, and Lewis sites formed by extraframework cations: Na+, Cu+, Ag+, Zn2+, Cu2+, Ga3+, and Al3+. Adsorption properties of cations are compared for a location of the cation in the five-membered ring. This location differs from the location in the six-membered ring observed for hydrated cations. The five-membered ring, however, represents a stable location of the bare cation. In this position any cation exhibits higher reactivity compared with the location in the six-membered ring and is well accessible by molecules adsorbed in the main channel of the zeolite. Calculated adsorption energies range from 4 to 87 kJ/mol, depending on electronegativity and ionic radius of the cation and the stability of the cation-zeolite complex. The largest adsorption energy is observed for Cu+ and the lowest for Al3+ integrated into the interstitial site of the zeolite framework. A linear dependence is observed between the stretching frequency and the bond length of the adsorbed H2 molecule. The capacity of the metal-exchanged zeolite to dissociate the H2 molecule does not correlate with the adsorption energy. Dissociation is not possible on single Cu+ cation. The best performance is observed for the Ga3+, Zn2+, and Al3+ extraframework cations, in good agreement with experimental data.  相似文献   

14.
Application of in situ X-ray absorption near-edge spectroscopy (XANES) at the Al K-edge provides unique insight into the flexibilty of the aluminum coordinations in zeolites as a function of treatment or during true reaction conditions. A unique, previously not observed, pre-edge feature is detected in zeolites H-Mordenite and steamed and unsteamed H-Beta at temperatures above 675 K. Spectra simulations using the full multiple scattering code Feff8 identify the unique pre-edge feature as three-coordinate aluminum. The amount of three-fold coordinated aluminum is a function of temperature and pretreatment of a zeolite: a steamed zeolite Beta contains more three-coordinate aluminum than an unsteamed sample. No clear differences between zeolites H-Mordenite and H-Beta were observed. Octahedrally coordinated aluminum forms in zeolites H-Mordenite and H-Beta at room temperature in a stream of wet helium. This octahedrally coordinated aluminum is unstable at temperatures higher than 395 K, where it quantitatively reverts to the tetrahedral coordination.  相似文献   

15.
Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides (NOx) from diesel engine exhaust at low temperatures. At a Cu/Mn ratio of 3:2, the NOx conversions at 200 °C reached 65% and 90% on Cu–Mn/ZSM-5 and Cu–Mn/SAPO-34, respectively. After a hydrothermal treatment and reaction in the presence of C3H6, the activity of Cu–Mn/SAPO-34 was more stable than that of Cu–Mn/ZSM-5. No obvious variations in the crystal structure or dealumination were observed, whereas the physical structure was best maintained in Cu–Mn/SAPO-34. The atomic concentration of Cu on the surface of Cu–Mn/SAPO-34 was quite stable, and the consumption of octahedrally coordinated Cu2+ could be recovered. Conversely, the proportion of octahedrally coordinated Cu2+ on the surface of Cu–Mn/ZSM-5 significantly decreased. Therefore, besides the structure, the redox cycle between Cu+ and octahedrally coordinated Cu2+ played an important role in the stability of the catalysts.  相似文献   

16.
用IR和ITPD技术研究了H(Al)ZSM-5、H(Ga)ZSM-5和H(Fe)ZSM-5杂原子分子筛的表面酸性。结果表明,这些分子筛表面既存在B酸中心,也存在L酸中心,但是就两种酸的表面浓度比值CL/CB而言,H(Ga)ZSM-5和H(Fe)ZSM-5要比H(Al)ZSM-5高得多。在十五烷裂解时,L酸中心起的作用可能更大。  相似文献   

17.
镧改性提高ZSM-5分子筛水热稳定性   总被引:1,自引:0,他引:1  
基于12T 团簇模型, 利用密度泛函理论(DFT)研究了ZSM-5 分子筛的水解脱铝机理以及镧改性提高ZSM-5分子筛水热稳定性的机理. 对未改性分子筛水解脱铝机理的研究表明, 首先是第一个水分子吸附在分子筛表面的酸性位上, 对分子筛的Al—O键起弱化作用, 使Al—O键伸长; 接着第二个水分子吸附到分子筛表面,分别与第一个水分子和分子筛骨架形成氢键, 进一步弱化与其最邻近的Al—O键, 并引致该键断裂. 同样, 其它的三个Al—O键也被削弱并逐一断裂, 从而发生分子筛水解脱铝现象. 引入的镧物种与分子筛骨架的四个O原子成键, 将铝包埋, 增加了分子筛孔壁厚度, 增大了水分子攻击铝的空间位阻, 抑制了水分子对Al—O键的弱化, 从而延缓Al—O键的断裂, 提高分子筛的水热稳定性. 计算的水分子吸附能和水解能进一步证实镧的引入提高了ZSM-5分子筛的水热稳定性.  相似文献   

18.
Direct conversion of methane using a metal-loaded ZSM-5 zeolite prepared via acidic ion exchange was investigated to elucidate the roles of metal and acidity in the formation of liquid hydrocarbons. ZSM-5 (SiO2/A12O3=30) was loaded with different metals (Cr, Cu and Ga) according to the acidic ion-exchange method to produce metal-loaded ZSM-5 zeolite catalysts. XRD, NMR, FT-IR and N2 adsorption analyses indicated that Cr and Ga species managed to occupy the alllmlnum positions in the ZSM-5 framework. In addition, Cr species were deposited in the pores of the structure. However, Cu oxides were deposited on the surface and in the mesopores of the ZSM-5 zeolite. An acidity study using TPD-NH3, FT-IR, and IR-pyridine analyses revealed that the total number of acid sites and the strengths of the BrSusted and Lewis acid sites were significantly different after the acidic ion exchange treatment.Cu loaded HZSM-5 is a potential catalyst for direct conversion of methane to liquid hydrocarbons. The successful production of gasoline via the direct conversion of methane depends on the amount of aluminum in the zeolite framework and the strength of the BrSnsted acid sites.  相似文献   

19.
A CrAPO-5 molecular sieve has been investigated with X-ray absorption spectroscopy (EXAFS-XANES) as dehydrated material and after loading with water and ammonia to unravel the coordination geometries of Cr3+ in the framework of a microporous crystalline aluminophosphate, more particularly of the AFI-type. A comparison of the XANES data, a preedge analysis with crystal field multiplet calculations and EXAFS data, pointed toward the presence of framework Cr3+ which, on dehydration, takes on a distorted tetrahedral coordination state. Due to the 3d3 configuration of Cr3+, this unusual tetrahedral coordination environment strongly tends to transform into the more stable 6-fold coordination geometry by binding two extraframework water molecules during hydration. In the presence of ammonia, tetrahedral Cr3+ readily transforms into a 5-fold coordination geometry by binding one ammonia molecule. Therefore, depending on the environmental conditions, the Cr3+ ions can occur in a 4-, 5-, or 6-fold coordination. This observation underlines the flexibility of transition metal ions, such as Cr3+, to cope with unusual coordination geometries in inorganic hosts, making them interesting as potential active sites in heterogeneous catalysis.  相似文献   

20.
Lewis acidic aluminum in zeolites, particularly acidity that is inherent to the framework, is an indeterminate concept. A fraction of framework aluminum changes geometry to octahedral coordination in the proton form of zeolite mordenite. Such octahedrally coordinated aluminum is the precursor of a Lewis acid site and its formation is accompanied by a loss in Brønsted acidity. Herein, we show that such Lewis acid sites have a preferred location in the pore structure of mordenite. A greater proportion of these Lewis acid sites resides in the side-pockets than in the main channel. By reverting the octahedrally coordinated aluminum back to a tetrahedral geometry, the corresponding Brønsted acid sites are restored with a concomitant loss in the ability to form Lewis acid sites. Thereby, reversible octahedral–tetrahedral aluminum coordination provides a means to indirectly switch between Lewis and Brønsted acidity. This phenomenon is unique to Lewis acidity that is inherent to the framework, thereby distinguishing it from Lewis acidity originating from extra-framework species. Furthermore, the transformation of framework aluminum into octahedral coordination is decoupled from the generation of distorted tetrahedrally coordinated aluminum, where the latter gives rise to the IR band at 3660 cm−1 in the OH stretching region.

Framework-associated aluminum is demonstrated to facilitate a reversible switch between Lewis and Brønsted acidity in zeolites with the Lewis acid sites preferentially populating the side-pockets in the case of mordenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号