首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This communication describes a new protocol for the construction of [2]rotaxanes: "threading-followed-by-shrinking". This approach involves the threading of a rodlike unit through a crown ether-like macrocycle and then shrinking the size of the macrocycle's cavity through coordination of a transition-metal ion by a salophen moiety in the macrocycle. The self-assembly of the macrocycle and a thread, followed by addition of palladium acetate, afforded the [2]rotaxane, which contains a palladium(II)-salophen moiety, after counterion exchange. This [2]rotaxane was characterized fully by NMR and IR spectroscopic, mass spectrometric, and elemental and X-ray crystallographic analyses.  相似文献   

2.
The mild and highly efficient thiol-ene click reaction has been used to construct a rotaxane incorporating dibenzo-24-crown-8 (DB24C8) and a dibenzylammonium-derived thread in high yield under the irradiation of UV light. A rotaxane containing a disulfide linkage in the macrocycle was also synthesized by the thiol-ene click reaction. It has been demonstrated that the formation of the [2]rotaxane with the disulfide bond in the macrocycle occurs by a mechanism that is different to the threading-followed-by-stoppering process. The successful construction of a rotaxane directly from its constituent components, the macrocycle containing a disulfide linkage and the dibenzylammonium hexafluorophosphate salt, suggests that the space within the macrocycle incorporating the disulfide linkage is smaller than the phenyl unit and a plausible reaction mechanism has been proposed as follows: A small amount of the initiator forms two radicals upon the absorption of UV irradiation; the radicals act as a "key" to "unlock" the disulfide bond in the macrocycle. The resulting crown ether like moiety in the macrocycle is clipped around the ammonium ion center in the dumb-bell-shaped compound. The [2]rotaxane is generated upon recombination of the disulfide linkage.  相似文献   

3.
Here we present the first synthesis of a [3]rotaxane with two dumbbell components threaded through a single gamma-cyclodextrin macrocycle. This synthesis is carried out in two steps: first one dumbbell is synthesized threaded through the macrocycle to give a [2]rotaxane, then a second dumbbell is synthesized through the remaining cavity of the [2]rotaxane. We have synthesized a hetero- [3]rotaxane with one stilbene and one cyanine dye threaded through gamma-cyclodextrin, which exhibits quantitative energy transfer between the two encapsulated dyes. The stilbene [2]rotaxane intermediate in this synthesis has a remarkably high affinity for suitably shaped hydrophobic guests in aqueous solution, facilitating the synthesis of [3]rotaxanes and suggesting possible applications in sensors.  相似文献   

4.
Li Y  Li H  Li Y  Liu H  Wang S  He X  Wang N  Zhu D 《Organic letters》2005,7(22):4835-4838
[reaction: see text] A novel [2]rotaxane, containing pyrene and perylene bisimide as both stoppers and photoactive units, has been prepared. The shuttling of the protonated macrocycle switched the energy transfer (EN) from a pyrene moiety to a perylene moiety, which resulted in changes of fluorescence of the perylene moiety.  相似文献   

5.
A general synthesis of triazolium‐containing [2]rotaxanes, which could not be accessed by other methods, is reported. It is based on a sequential strategy starting from a well‐designed macrocycle transporter which contains a template for dibenzo‐24‐crown‐8 and a N‐hydroxysuccinimide (NHS) moiety. The sequence is: 1) synthesis by slippage of a [2]rotaxane building‐block; 2) its elongation at its NHS end; 3) the delivery of the macrocycle to the elongated part of the axle by an induced translational motion; 4) the contraction process to yield the targeted [2]rotaxane and recycle the initial transporter.  相似文献   

6.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

7.
《中国化学快报》2022,33(11):4904-4907
A bistable [2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) unit was synthesized, which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system. The UV–vis, 1H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation, which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole (MTA) unit. This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules.  相似文献   

8.
We report a diverted route to [1]rotaxane and tris-branched [1]rotaxane that are devoid of any efficient template and which could not be obtained by classical straightforward strategies. The described chemical route relies on the utilization of a “macrocycle transporter”, which is able first to bind a macrocycle, second to link temporarily a triazolium-containing molecular axle, and third to deliver the macrocycle around the new docked axle through molecular machinery in a [1]rotaxane structure. The extended encircled thread is eventually cleaved by an amine or a triamine to afford the triazolium-containing [1]rotaxanes, releasing at the same time, the macrocycle transporter as a recyclable species.  相似文献   

9.
We report that a 2,2':6',2″-terpyridylmacrocycle-Ni complex can efficiently mediate the threading of two alkyl chains with bulky end groups in an active metal template sp(3)-carbon-to-sp(3)-carbon homocoupling reaction, resulting in a rare example of a doubly threaded [3]rotaxane in up to 51% yield. The unusual architecture is confirmed by X-ray crystallography (the first time that a one-ring-two-thread [3]rotaxane has been characterized in the solid state) and is found to be stable with respect to dethreading despite the large ring size of the macrocycle. Through such active template reactions, in principle, a macrocycle should be able to assemble as many axles in its cavity as the size of the ring and the stoppers will allow. A general method for threading multiple axles through a macrocycle adds significantly to the tools available for the synthesis of different types of rotaxane architectures.  相似文献   

10.
The synthesis of a pH‐sensitive two‐station [1]rotaxane molecular switch by self‐entanglement of a non‐interlocked hermaphrodite molecule, containing an anilinium and triazole moieties, is reported. The anilinium was chosen as the best template for the macrocycle benzometaphenylene[25]crown‐8 (BMP25C8) and allowed the self‐entanglement of the molecule. The equilibrium between the hermaphrodite molecule and the pseudo[1]rotaxane was studied by 1H NMR spectroscopy: the best conditions of self‐entanglement were found in the less polar solvent CD2Cl2 and at high dilution. The triazole moiety was then benzylated to afford a benzyltriazolium moiety, which then played a dual role. On one hand, it acts as a bulky gate to trap the BMP25C8, thus to avoid any self‐disentanglement of the molecular architecture. On another hand, it acts as a second molecular station for the macrocycle. At acidic pH, the BMP25C8 resides around the best anilinium molecular station, displaying the lasso [1]rotaxane in a loosened conformation. The deprotonation of the anilinium molecular station triggers the shuttling of the BMP25C8 around the triazolium moiety, therefore tightening the lasso.  相似文献   

11.
Two novel multilevel switchable [2]rotaxanes containing an ammonium and a triazole station have been constructed by a CuI‐catalyzed azide–alkyne cycloaddition reaction. The macrocycle of [2]rotaxane containing a C6‐chain bridge between the two hydrogen bonding stations exhibits high selectivity for the ammonium cation in the protonated form. Interestingly, the macrocycle is able to interact with the two recognition stations when the bridge between them is shortened. Upon deprotonation of both [2]rotaxanes, the macrocycle moves towards the triazole recognition site due to the hydrogen‐bond interaction between the triazole nitrogen atoms and the amide groups in the macrocycle. Upon addition of chloride anion, the conformation of [2]rotaxane is changed because of the cooperative recognition of the chloride anion by a favorable hydrogen‐bond donor from both the macrocycle isophthalamide and thread triazole CH proton.  相似文献   

12.
Although various methods for switching the positions of macrocycles in bistable rotaxane-based molecular shuttles have been developed, exploiting such movements to trigger property changes has thus far received little attention. Here we describe one of the first examples of a property change achieved through a controlled large-amplitude translational motion in a rotaxane; a novel type of chiroptical switch is described, in which light-induced translation of the macrocycle along the thread of a [2]rotaxane produces a strong induced circular dichroism (ICD) response only when the macrocycle is hydrogen-bonded to a chiral peptide station.  相似文献   

13.
A novel chemically-controlled [2]rotaxane molecular shuttle was successfully designed and synthesized. A H2S-responsive bulk barrier was introduced between the two identical recognition stations of the [2]rotaxane to prevent dynamic shuttling of the macrocycle. Upon addition of H2S, the complete intramolecular cascade reaction occurs in a controllable manner, resulting in removal of the bulk barrier and the shuttling motion of the macrocycle between the two stations recovers.  相似文献   

14.
A [2]rotaxane built around a multi-responsive bis-acridinium macrocycle has been synthesized. Structural investigation has confirmed the interlocked nature of the molecule, and MD simulations illuminated its conformational dynamics with atomic resolution. Both halochromic and redox-switching properties were explored to shed light on the mechanical response and electronic changes that occur in the bis-acridinium [2]rotaxane. The topology of the rotaxane led to different mechanical behaviors upon addition of hydroxide ions or reduction that were easily detected by UV/Vis spectroscopy and electrochemistry.  相似文献   

15.
Feng-Yuan Ji  Dong Zhang 《Tetrahedron》2009,65(45):9081-3561
A bistable porphyrin-containing [2]rotaxane is synthesized with a shuttling benzylic-amide macrocycle mechanically locked onto the thread subunit by formations of H-bonds with two potential stations. This macrocycle comprises two pyridine groups, which would be easily coordinated with zinc porphyrin. The Zn(II) coordination of porphyrin moiety on the thread subunit, immediately followed by the coordination with pyridine groups on the macrocycle, leads to an intermolecular axle-macrocycle-type nanostructure. Moreover, the self-assembly way shows great difference from the two states of the rotaxane monomer: The coordination-driven self-organization of the trans-state E2 leads to a network structure, whereas the cis-state Z2 gives birth to an irregular assembly.  相似文献   

16.
With a dinuclear macrocycle 2 that contains weak reversible OsVI-N coordinate bonds, self-assembly and equilibrium dynamics of [2]- and [3]rotaxanes have been investigated. When the macrocycle 2 was mixed together with threads 4a-e, which all contain an adipamide station but different sizes of end groups, [2]pseudorotaxane- and rotaxane-like complexes were immediately formed with large association constants of >7 x 103M(-1) in CDCl3 at 298 K. Exchange dynamics, explored by 2D-EXSY experiments, suggest that assembly and disassembly of complexes occur through two distinct pathways, slipping or clipping, and this depends on the size of the end groups. The slipping pathway is predominant with smaller end groups that give pseudorotaxane-like complexes, while the clipping pathway is observed with larger end groups that yield rotaxane-like complexes. Under the same conditions, exchange barriers (deltaG++) were 14.3 kcalmol(-1) for 4a and 16.7 kcalmol(-1) for 4d, and indicate that the slipping process is at least one order of magnitude faster than the clipping process. Using threads 13a and 13b that contain two adipamide groups, more complicated systems have been investigated in which [2]rotaxane, [3]rotaxane, and free components are in equilibrium. Concentration- and temperature-dependent 1H NMR spectroscopic studies allowed the identification of all possible elements and the determination of their relative distributions in solution. For example, the relative distribution of the free components, [2]rotaxane, and [3]rotaxane are 30, 45, and 25 %, respectively, in a mixture of 2 (2mM) and 13a (2mM) in CDCl3 at 10 degrees C. However, [3]rotaxane exists nearly quantitatively in a mixture of 2 (4 mM) and 13 a (2 mM) in CDCl3 at a low temperature - 10 degrees C.  相似文献   

17.
A fifteen-year riddle has been settled: neutralization, the most popular chemical event, of a crown ether/sec-ammonium salt-type rotaxane has been achieved and a completely nonionic crown ether/sec-amine-type rotaxane isolated. A [2]rotaxane was prepared as a typical substrate from a mixture of dibenzo[24]crown-8 ether (DB24C8) and sec-ammonium hexafluorophosphate (PF(6)) with a terminal hydroxy group through end-capping with 3,5-dimethylbenzoic anhydride in the presence of tributylphosphane as a catalyst in 90% yield. A couple of approaches to the neutralization of the ammonium rotaxane were investigated to isolate the free sec-amine-type rotaxane by decreasing the degree of thermodynamic and kinetic stabilities. One approach was the counteranion-exchange method in which the soft counterion PF(6)(-) was replaced with the fluoride anion by mixing with tetrabutylammonium fluoride, thus decreasing the cationic character of the ammonium moiety. Subsequent simple washing with a base allowed us to isolate the free sec-amine-type rotaxane in a quantitative yield. The other approach was a synthesis based on a protection/deprotection protocol. The acylation of the sec-ammonium moiety with 2,2,2-trichloroethyl chloroformate gave an N-carbamated rotaxane that could be deprotected by treating with zinc in acetic acid to afford the corresponding free sec-amine-type rotaxane in a quantitative yield. The structure of the free sec-amine-type rotaxane was fully confirmed by spectral and analytical data. The generality of the counteranion-exchange method was also confirmed through the neutralization of a bisammonium-type [3]rotaxane. The mechanism was studied from the proposed potential-energy diagram of the rotaxanes with special emphasis on the role of the PF(6)(-) counterion.  相似文献   

18.
A [2]rotaxane was produced through the assembly of a picolinaldehyde, an amine, and a bipyridine macrocycle around a CuI template by imine bond formation in close‐to‐quantitative yield. An analogous [3]rotaxane is obtained in excellent yield by replacing the amine with a diamine, thus showing the suitability of the system for the construction of higher order interlocked structures. The rotaxanes are formed within a few minutes simply through mixing the components in solution at room temperature and they can be isolated through removal of the solvent or precipitation.  相似文献   

19.
Leigh DA  Thomson AR 《Organic letters》2006,8(23):5377-5379
[Structure: see text] Protonation controls the location of a dual binding mode macrocycle in a [2]rotaxane. In the neutral form, amide-amide hydrogen bonds hold the macrocycle over a dipeptide residue; when the thread is protonated, polyether-ammonium cation interactions dominate and the macrocycle changes position.  相似文献   

20.
A [3]rotaxane molecular shuttle containing two alpha-cyclodextrin (alpha-CD) macrocycles, an azobenzene unit, a stilbene unit, and two different fluorescent naphthalimide units has been investigated. The azobenzene unit and the stilbene unit can be E/Z-photoisomerized separately by light excited at different wavelengths. Irradiation at 380 nm resulted in the photoisomerization of the azobenzene unit, leading to the formation of one stable state of the [3]rotaxane (Z1-NNAS-2CD); irradiation at 313 nm resulted in the photoisomerization of the stilbene unit, leading to the formation of another stable state of the [3]rotaxane (Z2-NNAS-2CD). The reversible conversion of the Z1 and Z2 isomers back to the E isomer by irradiation at 450 nm and 280 nm, respectively, is accompanied by recovery of the absorption and fluorescence spectra of the [3]rotaxane. The E isomer and the two Z isomers have been characterized by 1H NMR spectroscopy and by two-dimensional NMR spectroscopy. The light stimuli can induce shuttling motions of the two alpha-CD macrocycles on the molecular thread; concomitantly, the absorption and fluorescence spectra of the [3]rotaxane change in a regular way. When the alpha-CD macrocycle stays close to the fluorescent moiety, the fluorescence of the moiety become stronger due to the rigidity of the alpha-CD ring. As the photoisomerization processes are fully reversible, the photo-induced shuttling motions of the alpha-CD rings can be repeated, accompanied by dual reversible fluorescence signal outputs. The potential application of such light-induced mechanical motions at the molecular level could provide some insight into the workings of a molecular machine with entirely optical signals, and could provide a cheap, convenient interface for communication between micro- and macroworlds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号