首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A pair of cis-trans isomeric chiral stationary phases (CSPs) derived from (S)-1-(1-naphtyl)ethylamine was prepared. The chromatographic behaviours on both CSPs with regard to the resolution of enantiomeric amino acids, amino alcohols, amines, and carboxylic acid were studied. According to separation factors, the trans-CSP showed better chiral recognition ability for the separation of most analytes chosen in this study. Three homologous series of the alkyl esters of racemic amino acids were resolved on both CSPs using n-hexane-2-propanol and n-hexane-dichloromethane as mobile phases. The trans-CSP also showed better enantioselectivity for the resolution of homologues. A reverse of elution order was observed for the resolution of the homologous series of phenylglycine alkyl esters on both CSPs. It was found that the relationship between the separation factor and the alkyl chain length of the ester homologous series depended upon the components of mobile phase. A higher magnitude of difference between the two CSPs in enantioselectivity for the resolution of a given homologue was obtained when n-hexane-dichloromethane was used as a mobile phase. A chiral recognition process, in which steric repulsion, face-to-face π-π interaction, face-to-edge π-π interaction and hydrogen bonding interaction were involved, was also suggested to describe the separation of enantiomeric homologues on both CSPs. This study clearly indicates that the chiral resolution is influenced by the geometry of the double bond in a CSP.  相似文献   

2.
《Analytical letters》2012,45(15):2791-2799
Abstract

A convenient way of resolving the enantiomers of amino acid esters after their derivatization using benzophenone imine is described. The enantiomers of benzophenone Schiff base derivatives of various amino acid ethyl esters are readily separated on three commercially available chiral stationary phases (CSPs). Among them, CSPs 2 and 3 afford generally the base-line enantioresolution for the analytes studied. From understanding of chromatographic results, a plausible chiral recognition mechanism is discussed.  相似文献   

3.
A series of fourteen anilide derivatives of ibuprofen were resolved on six chiral stationary phases (CSPs) derived from N-arylcarbamoyl derivatives of (S)-phenylglycine. Excellent chiral resolutions were achieved on these CSPs. The ionic-type CSPs showed better chiral recognition abilities than the corresponding covalent-type CSPs, and the CSP bearing two chiral centers has better performance than the CSPs bearing only one chiral center. The highest separation factor was achieved using the ionic-type CSP bearing two chiral centers for the resolution of the 3,5-dinitroanilide derivative of ibuprofen. This result is better than those reported in literature for the resolution of ibuprofen on the CSPs derived from amino acids, According to the chromatographic behaviors, the hydrogen bonding interaction, the π-π interactions provided by the phenyl groups in CSPs bearing one chiral center, and the phenylethylcarbamoyl moiety in CSPs bearing two chiral centers dominate the chiral recognition.  相似文献   

4.
Three new polymeric chiral stationary phases were synthesized based on (1S,2S)-1,2-bis(2,4,6-trimethylphenyl)ethylenediamine, (1S,2S)-1,2-bis(2-chlorophenyl)ethylenediamine, and (1S,2S)-1,2-di-1-naphthylethylenediamine via a simple free-radical-initiated polymerization in solution. These monomers are structurally related to (1S,2S)-1,2-diphenylethylenediamine which is the chiral monomer used for the commercial P-CAP-DP polymeric chiral stationary phase (CSP). The performance of these three new chiral stationary phases were evaluated in normal phase high-performance liquid chromatography (HPLC) and supercritical fluid chromatography and the results were compared with those of the P-CAP-DP column. All three new phases showed enantioselectivity for a large number of racemates with a variety of functional groups, including amines, amides, alcohols, amino acids, esters, imines, thiols, and sulfoxides. In normal phase, 68 compounds were separated with 28 baseline separations (Rs ≥ 1.5) and in SFC, 65 compounds were separated with 24 baseline separations. In total 72 out of 100 racemates were separated by these CSPs with 37 baseline separations. Complimentary separation capabilities were observed for many analytes. The new polymeric CSPs showed similar or better enantioselectivities compared with the commercial column in both HPLC and SFC. However, faster separations were achieved on the new stationary phases. Also, it was shown that these polymeric stationary phases have good sample loading capacities while maintaining enantioselectivity.  相似文献   

5.
Two novel chiral stationary phases (CSPs) were prepared based upon the regioselective immobilizations of beta-cyclodextrin (beta-CD) at its C2 position to the silica support. The mono-2A-azido-2A-deoxyperphenylcarbamoylated beta-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated beta-cyclodextrin were synthesized by selective tosylation and azidolysis followed by perfunctionalisation. The derivatised cyclodextrins were then immobilized onto the aminised silica gel via the Staudinger reaction to provide new chiral stationary phases. Their application to high-performance liquid chromatography (HPLC) enantioseparation of racemic compounds was demonstrated using beta-adrenergic blockers, flavonone compounds, benzodiazepinones, antihistamines and weakly protolytic compounds, of which good separations were achieved for some racemic compounds, for instance, bendroflumethiazide (Rs 6.26), oxazepam (Rs 5.99), temazepam (Rs 2.85) and althiazide (Rs 1.13) when compared with the corresponding CSPs where the beta-CD molecule was regioselectively immobilized at the C6 position. The enantiodiscriminatory properties of these CSPs were found to be affected by the orientation of the CD cavity under reversed-phase conditions, and also by the derivitising groups of the CD. The HPLC results inferred that the mono-6A-azido-6A-deoxyperphenylcarbamoylated CD CSP (CD bonded at C6 position to silica) exhibited slightly better chiral recognition ability than mono-2A-azido-2A-deoxyperphenylcarbamoylated CD CSP under the normal-phase and reversed-phase modes on the separation of 31 different racemic compounds and drugs. On the contrary, higher chiral recognition abilities were observed on the mono-2(A)-azido-2A-deoxyperacetylated CD CSP compared to mono-6A-azido-6A-deoxyperacetylated CD CSP.  相似文献   

6.
在Pirkle型的(S,S)-Whelk-O 1与纤维素衍生物型的CDMPC两种手性柱上对六种 外消旋萘普生酯进行了对映体分离,通过研究烷氧基结构上的差异以及流动相中不 同的醇类添加剂对手性识别的影响,探讨和比较了外消旋萘普生酯在两种手性固定 相上手性识别的机理。对于 (S,S)-Whelk-O 1, 溶质与固定相之间的吸引作用于 手性识别的主要因素,而对于CDMPC,溶质在手性空腔中的空间适应性很可能是手 性识别的关键。  相似文献   

7.
Combination of the enantioselective properties of the two versatile gas-chromatographic chiral stationary phases (CSPs) octakis(3-O-butanoyl-2,6-di-O-n-pentyl)-gamma-CD (Lipodex E) 1 and L-valine-diamide-based CSP Chirasil-Val-C11 2 has been realized by doping the chiral polymer 2 with the nonpolymeric selector 1. The resulting mixed-mode CSP Chirasil-Val(gamma-Dex) 3 was found to have a greatly improved enantioselectivity toward proline and aspartic acid (as N-trifluoroacetyl ethyl or methyl esters) in comparison to the single-mode CSP 2. The presence of the CD selector in 3 extended the scope of gas-chromatographic enantioseparations achievable on 2 to underivatized alcohols, terpenes, and other chiral compounds that are exclusively enantioseparated on 1.  相似文献   

8.
Two new synthetic polymeric chiral stationary phases (CSPs) based on trans-(1S,2S)-cyclohexanedicarboxylic acid bis-4-vinylphenylamide (I) and trans-N,N′-(1R,2R)-cyclohexanediyl-bis-4-ethenylbenzamide (II) monomers were prepared and evaluated by normal phase high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). A variety of chiral compounds were separated on these two new CSPs. The different orientation of the amide groups in the two CSPs resulted in a striking difference in the enantioselectivity properties of these two CSPs. Their differences in enantioselectivity with HPLC and SFC were compared.  相似文献   

9.
邵保海  徐秀珠  邹莉  蔡小军  傅小芸 《化学学报》2001,59(11):1982-1988
在纯聚合物型的纤维素三醋酸酯(CTA)、纤维素三苯甲酸酯(CTB)与涂敷型的CTB、纤维素三(4-甲基苯甲酸酯)(CTMB)四种纤维素衍生手性柱上成功地分离了几种外消旋萘普生酯,研究了流动相组成以及溶质的结构对手性分离的影响,探讨了纤维素衍生物手性固定相对外消旋萘普生酯手性识别的机理,得出溶质在固定相手性空腔中体积大小的适应性,尤其是立体结构上的空间适应性是手性识别的关键,不同的固定相这种适应性有所不同,  相似文献   

10.
A set of 42 chiral compounds containing stereogenic sulfur was prepared. There were 31 chiral sulfoxide compounds, three tosylated sulfilimines and eight sulfinate esters. The separations were done using five different macrocyclic glycopeptide chiral stationary phases (CSPs), namely ristocetin A, teicoplanin, teicoplanin aglycone (TAG), vancomycin and vancomycin aglycone (VAG) and seven eluents, three normal-phase mobile phases, two reversed phases and two polar organic mobile phases. Altogether the macrocyclic glycopeptide CSPs were able to separate the whole set of the 34 sulfoxide enantiomers and tosylated derivatives. Five of the eight sulfinate esters were also separated. The teicoplanin and TAG CSPs were the most effective CSPs able to resolve 35 and 33 of the 42 compounds. The three other CSPs each were able to resolve more than 27 compounds. The normal-phase mode was the most effective followed by the reversed-phase mode with methanol-water mobile phases. Few of these compounds could be separated in the polar organic mode with 100% methanol mobile phases. Acetonitrile was also not a good solvent for the resolution of enantiomers of sulfur-containing compounds, neither in the reversed-phase nor in the polar organic mode. The structure of the chiral molecules was compared to the enantioselectivity factors obtained with the teicoplanin and TAG CSP. It is shown that the polarity, volume and shape of the sulfoxide substituents influence the solute enantioselectivity factor. Changing the oxidation state of the sulfur atom from sulfoxides to sulfinate esters is detrimental to the compound's enantioselectivity. The enantiomeric retention order on the teicoplanin and TAG CSPs was very consistent: the (S)-(+)-sulfoxide enantiomer was always the less retained enantiomer. In contrast, the (R)-(-)-enantiomer was less retained by the ristocetin A, vancomycin and vancomycin aglycone columns, showing the complementarity of these CSPs. The macrocyclic glycopeptide CSPs provided broad selectivity and effective separations of chiral sulfoxides.  相似文献   

11.
N. Dimov 《Chromatographia》1999,50(1-2):61-64
Summary The liquid-chromatographic separation of the enantiomers of amino acid esters as benzophenone Schiff-base derivatives on polysaccharide-derived chiral stationary phases (CSPs) is described. The performance of Chiralcel OF was superior to that of the other CSPs for resolution of benzophenone imine derivatives of amino acid ethyl and methyl esters. The enantiomers of most of the amino acid esters examined as their benzophenone imine derivatives were resolved to baseline on Chiralcel OF. The L-(−) enantiomers of all the analytes were preferentially retained on Chiralcel OF. The resolution of several imine derivatives of amino acid esters was investigated, as was the effect of eluent composition on the resolution of amino acid ethyl esters as their benzophenone imine derivatives.  相似文献   

12.
Enantiomer separation of mandelates and their analogs, which are important intermediates in asymmetric synthetic and pharmaceutical chemistry, was investigated by capillary gas chromatography using different cyclodextrin derivative chiral stationary phases (CD CSPs). The used cyclodextrin derivatives included permethylated beta-CD (PMBCD), permethylated gamma-CD, heptakis(2,6-di-O-butyl-3-O-butyryl)-beta-CD, heptakis(2,6-di-O-pentyl-3-O-acetyl)-beta-CD and heptakis(2,6-di-O-nonyl-3-O-trifluoroacetyl)-beta-CD (DNTBCD), respectively. Among all the CSPs used, PMBCD and DNTBCD exhibited the broadest and best enantioselectivity for all the racemates investigated. Some thermodynamic parameters were evaluated and an enthalpy-entropy compensation effect was observed in enantiomer separation processes of mandelates and their analogs. Based on thermodynamic data and molecular mechanics calculations, the chiral recognition mechanism of mandelate derivatives on CD CSPs is discussed.  相似文献   

13.
Retention and enantioseparation behavior of ten 2,2′‐disubstituted or 2,3,2′‐trisubstituted 1,1′‐binaphthyls and 8,3′‐disubstituted 1,2′‐binaphthyls, which are used as catalysts in asymmetric synthesis, was investigated on eight chiral stationary phases (CSPs) based on β‐CD, polysaccharides (tris(3,5‐dimethylphenylcarbamate) cellulose or amylose CSPs) and new synthetic polymers (trans‐1,2‐diamino‐cyclohexane, trans‐1,2‐diphenylethylenediamine and trans‐9,10‐dihydro‐9,10‐ethanoanthracene‐(11S,12S)‐11,12‐dicarboxylic acid CSPs). Normal‐, reversed‐phase and polar‐organic separation modes were employed. The effect of the mobile phase composition was examined. The enantiomeric separation of binaphthyl derivatives, which possess quite similar structures, was possible in different enantioselective environments. The substituents and their positions on the binaphthyl skeleton affect their properties and, as a consequence, the separation system suitable for their enantioseparation. In general, the presence of ionizable groups on the binaphthyl skeleton, substitution with non‐identical groups and a chiral axis in the 1,2′ position had the greatest impact on the enantiomeric discrimination. The 8,3′‐disubstituted 1,2′‐binaphthyl derivatives were the most easily separated compounds in several separation systems. From all the chiral stationary phases tested, cellulose‐based columns were shown to be the most convenient for enantioseparation of the studied analytes. However, the polymeric CSPs with their complementary behavior provided good enantioselective environments for some derivatives that could be hardly separated in any other chromatographic system.  相似文献   

14.
Polysaccharide-immobilized chiral stationary phases (CSPs) were prepared by the polymerization of cellulose 3,5-dimethylphenylcarbamate, having a polymerizable vinyl group, such as 4-vinylphenylcarbamate or 2-methacryloyloxyethylcarbamate, at the 6-position, with a vinyl monomer, such as styrene, isoprene, t-butyl acrylate, or t-butyl methacrylate, on silica gel under various conditions. Their chiral recognition abilities were then evaluated with high-performance liquid chromatography. The immobilized cellulose 3,5-dimethylphenylcarbamate remained on the silica gel even if washed with tetrahydrofuran, which could dissolve the cellulose derivative. The chiral recognition abilities of the immobilized CSPs were similar to those of the coated CSPs when the vinyl monomer content was low. The chiral recognition abilities of the obtained immobilized CSPs slightly depended on the vinyl monomers. The immobilization of the cellulose derivatives was more efficiently attained on the silica gel modified with a vinyl compound. The cellulose derivatives, randomly having a vinyl group at the 2-, 3-, or 6-position of the glucose unit, were prepared by a one-pot reaction. The immobilization efficiency of these derivatives was slightly lower than that of the derivative with the vinyl group at the 6-position. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3703–3712, 2003  相似文献   

15.
The separation of 17 chiral sulfoxides and eight chiral sulfinate esters by gas chromatography (GC) on four derivatized cyclodextrin chiral stationary phases (CSPs) (Chiraldex G-TA, G-BP, G-PN, B-DM) is presented. Many of these compounds are structural isomers or part of a homologous series. Differences in enantioselectivity of the methyl phenyl sulfoxide isomers on the derivatized gamma cyclodextrin and the heptakis 2,6-di-O-methyl-beta-cyclodextrin (i.e. B-DM) CSPs are discussed. Under the conditions of this study, the molecular mass cut-off for the GC separation of these compounds was approximately 230. Compounds of higher molecular mass were not eluted from the CSPs at reasonable times and temperatures, but these higher molecular mass enantiomers can be separated by liquid chromatography and capillary electrophoresis. The enantiomeric separation and elution order of a sulfinate ester containing two stereogenic centers as well as 15 chiral sulfoxides is presented. The G-TA and B-DM CSPs generally gave opposite elution orders for most of the compounds studied.  相似文献   

16.
金京玉  黄虎  李元宰 《色谱》2011,29(4):368-372
采用高效液相色谱法,以9-蒽醛为衍生试剂,在5种多糖衍生物的手性固定相(CSPs)上对几种α-氨基酸甲酯对映体进行了手性分离。色谱条件如下: 流动相为含3%~10%(v/v)异丙醇的正己烷溶液,流速为1.0 mL/min,检测波长为254 nm。结果表明,α-氨基酸甲酯-9-蒽醛亚胺衍生物在Chiralcel OD柱或Chiralcel OD-H柱上的手性分离结果优于其他CSPs,而且在Chiralcel OD柱或Chiralcel OD-H柱上全部得到了基线拆分(α=1.24~5.47, Rs=2.56~13.90), L-对映体在这两种色谱柱上的保留强于D-对映体。同时还考察了几种脂肪胺在5种多糖衍生物手性固定相上的对映体拆分效果,结果表明脂肪胺的9-蒽醛亚胺衍生物在Chiralcel OD柱或Chiralcel OD-H柱上的分离效果良好。该法可用于其他α-氨基酸酯和胺类化合物对映体的分析。  相似文献   

17.
Stereoselective analytical HPLC separations have been developed for a series of biologically active chiral 2-pyrazolines (1-22) to be used in monitoring their resolution reactions or to custom semipreparative HPLC separations prior to biological assessment of both enantiomers. Polysaccharide-based chiral stationary phases (CSPs), namely, Lux amylose-2 and cellulose-2, have been used. Both normal (n-hexane/ethanol) and polar organic (ethanol, methanol, acetonitrile, or mixtures thereof) elution modes were very beneficial for the achievement of baseline separations. The impact of various chemical moieties embedded in the structures of 2-pyrazolines 1-22 and the adopted stationary phases on chiral recognition has been investigated. A case of reversed order of elution following alterations in either stationary phase or elution mode has been observed. Our findings recommend that normal elution mode can be used for optimizing semipreparative HPLC methods whereas polar organic mobile phases (such as acetonitrile and ethanol) are more suited to stereoselective reactions monitoring, routine quality control work, or for pharmacological and toxicological assays. These results settle the implementation of polysaccharide-based CSPs using different elution modes and declare the practicality of such CSPs in stereoselective HPLC.  相似文献   

18.
Chiral stationary phases (CSPs) for liquid chromatography derived from N-(acyl)proline-3,5-dimethylanilides separate the enantiomers of N-(3,5-dinitrobenzoyl)-alpha-amino esters and amides with high levels of selectivity. These CSPs have been used to assemble a large body of chromatographic data which indirectly supports the validity of the mechanistic rationale originally used in the design of these CSPs. We herein report (1)H and (13)C chemical shift data obtained when the (S)-enantiomer of chiral solvating agent (CSA) 3, a soluble analogue of the selector used in CSP (S)-1, acts on each of the enantiomers of the dimethylamide of N-(3,5-dinitrobenzoyl)leucine, 2. The changes in chemical shift in the mixture of (S)-2 and (S)-3 support the existence of those interactions thought to be essential to chiral recognition in this system. In addition, significant intermolecular NOESY enhancements are observed in this mixture. These NOE data are consistent with the structure expected for the more stable diastereomeric adsorbate formed between (S)-2 and the (S)-proline-derived CSP 1. No intermolecular NOEs are observed for corresponding mixtures of the chiral solvating agent (S)-3 and (R)-2, the enantiomer least retained on (S)-CSP 1.  相似文献   

19.
Enantiomeric separation of two aromatic α-substituted alanine esters was achieved on two commercially available polysaccharide-based chiral stationary phases (CSPs): amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) and cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC). The interactions between enantiomeric analytes and the CSPs were investigated using chromatographic methods and vibration circular dichroism (VCD). The two analytes differ on the aromatic portion of the molecules where one analyte has a π-acceptor aromatic ring (1) while the other has a π-donor aromatic ring (2). When an ADMPC CSP was employed, an increase in the polarity of the mobile phase leads to a reversal of the elution order for the two enantiomers of 1. The elution order of compound 2 was not affected by the polarity of the mobile phase. In order to gain an understanding of these phenomena, the enantiomeric separation of 1 and 2 was also performed on the CDMPC CSP. Interestingly, no reversal of elution order was observed upon the chromatographic separation of both pairs of enantiomers of compounds 1 and 2 upon increasing the solvent polarity when a CDMPC CSP was utilized. To understand the underlying mechanism governing these chiral separations, VCD was applied to study the structure of the ADMPC and CDMPC polymers and their conformational behaviors under chromatographic conditions. For the first time the conformations of the side chains of both polymers were revealed based on the VCD spectra along with DFT calculations. Furthermore, the interactions between the two analytes and the two CSPs were directly probed by VCD. By comparing the spectral differences of the two CSPs in the presence of the two analytes, the detailed interactions involving different functional groups associated with the chiral recognition were elucidated and thus explained the unusual reversal of elution order associated with increasing solvent polarity.  相似文献   

20.
Rapid and efficient enantioseparation of halogen aryl alcohols and β‐blockers propranolol and pindolol in packed bed CEC (p‐CEC) using as‐prepared submicron porous silica chiral stationary phases (CSPs) has been achieved. Monodispersed 0.66 and 0.81 μm chiral submicron porous silica spheres were prepared using tetramethoxysilane and hexadecyltrimethylammonium bromide, followed by a hydrothermal treatment method with ammonia–ethanol to expand the pore of silica spheres without changing their spherical morphology. A proper specific surface of ca. 230 m2/g and pore sizes average of 6–8 nm were obtained by this method. The submicron porous silica spheres were modified with mono‐6‐phenylcarbamoylated β‐CD via thiol‐en radical addition. They were packed into 9 cm 50 μm id capillary columns with photopolymerized monolithic frits. These submicron CSPs showed greater column efficiency (about 476 000 plates/m for 4‐iodophenyl‐1‐ethanol) and higher resolution than the corresponding 3 μm CSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号