首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonaqueous background electrolytes broaden the application of capillary electrophoresis displaying altered separation selectivity and interactions between analytes and buffer additives compared to aqueous background electrolytes. In addition, nonaqueous capillary electrophoresis (NACE) appears to be ideally suited for online coupling with mass spectrometry due to the high volatility and low surface tension of many organic solvents. Despite these advantages and an increasing use of nonaqueous background electrolytes in CE, coupling of NACE to mass spectrometry has not yet been applied very often to date. The present review summarizes the applications of online NACE-MS with regard to the analysis of drugs, stereoisomers, peptides, alkaloids, polymers and others. A brief discussion of solvent effects in NACE and pH of nonaqueous background electrolyte systems is also presented.  相似文献   

2.
《Electrophoresis》2017,38(7):1060-1067
Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono‐6‐deoxy‐6‐(3‐methylimidazolium)‐β‐cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β‐cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β‐cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β‐cyclodextrin ionic liquid. The satisfied result demonstrated that the β‐cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation.  相似文献   

3.
N,N'-Alkylmethylimidazolium cations have been separated in NACE when one of the N,N'-dialkylimidazolium salts (ionic liquids (ILs)) was used as an electrolyte additive to the organic solvent separation medium. The separated species were 1-methyl-, 1-ethyl-, 1-butyl-, 1-octyl-, 1-decyl-3-methylimidazolium and N-butyl-3-methylpyridinium cations and BGE composed of 1-ethyl-3-methylimidazolium ethylsulfate or 1-butyl-3-methylimidazolium trifluoroacetate [BMIm][FAcO] (A6; B2) diluted in ACN. It was demonstrated that contactless conductivity detection (CCD) may be applied to monitoring the separation process in nonaqueous separation media, allowing to use the UV light-absorbing imidazolium-based electrolyte additives. There could be marked three concentration regions of added ILs; at first ionic strength of BGE below 1-2 mM, and then the actual electrophoretic mobility of analytes rises from 0. At concentrations above 1-2 mM, the added IL facilitated separation. In concentration region of 1-20 mM, the actual electrophoretic mobility of analyzed imidazolium cations was increasing with decrease in separation medium ionic strength. At higher concentrations of BGE (above 30 mM), the conductivity of the separation media became too high for this detector. Some organic dyes were also successfully separated and detected by contactless conductivity detector in a 20 mM A6 separation electrolyte in ACN.  相似文献   

4.
Huie CW 《Electrophoresis》2003,24(10):1508-1529
A review of recent developments in theoretical as well as application studies concerning the use of organic solvents, either as purely nonaqueous solvents, hydro-organic mixtures, or a combination of an organic solvent with another organic modifier(s), in the sample matrix and/or separation buffer for effecting sample pretreatment and/or improving separation performances in capillary electrophoresis (CE) is presented. In particular, recent advances made in furthering the basic understanding of selectivity changes that occur in capillary zone electrophoresis due the presence of organic solvents in the separation medium, based on in-depth studies of fundamental processes, such as acid-base chemistry, ion-ion and ion-solvent interactions, were discussed in detail. The utilization of organic solvents for improving the resolution of highly challenging and important separations, i.e., those involving the separation of positional and optical isomers, was also critically reviewed. Furthermore, a comprehensive survey of the use of organic solvents for on-line sample pretreatment, e.g., minimizing aggregation and maximizing solubilization of hydrophobic analytes, improving concentration detection sensitivity for analytes via the use of sample stacking, was presented and discussed. Moreover, recent applications involving the use of organic solvents for improving the CE separations of a variety of molecular species with significance in various disciplines, including biological, environmental and pharmaceutical areas, were summarized and tabulated.  相似文献   

5.
Enantiomeric separations by nonaqueous capillary electrophoresis   总被引:3,自引:0,他引:3  
This paper reviews the recent advances in enantioseparations by nonaqueous capillary electrophoresis (NACE) and the effect of organic solvents on mobility of enantiomers, separation selectivity and resolution. In general, the enantioseparation systems in NACE are similar to those of aqueous capillary electrophoresis (CE) except pure organic solvents are used. The influence of important parameters such as concentration and type of chiral selectors, apparent pH, ionic strength, temperature, and control of electroosmotic flow is discussed. In addition, the reported applications of NACE separations of racemates are presented.  相似文献   

6.
A simple method for the separation and characterization of a group of nine basic compounds, comprising seven tricyclic antidepressant and two bronchodilator drugs, by nonaqueous capillary electrophoresis (NACE) employing ultraviolet and mass spectrometry detection is described. After optimization of the electrophoresis separation conditions, including the compositions of the electrolyte and the organic solvent, a reliable separation of all nine basic analytes was achieved in 80 mM ammonium formate dissolved in a methanol-acetonitrite (80:20 v/v) mixture, having an apparent pH of 8.7. The volatile nonaqueous electrolyte system used with a normal electroosmotic flow polarity also provided an optimal separation condition for the characterization of the analytes by mass spectrometry. When results were compared with reversed-phase gradient and isocratic high-performance liquid chromatography (HPLC) methods, the NACE method provided greater efficiency, achieving baseline resolution for all nine basic compounds in less than 30 min. The NACE method is suitable for use as a routine procedure for the rapid separation and characterization of basic compounds and is a viable alternative to HPLC for the separation of a wide range of pharmaceutical drugs.  相似文献   

7.
The use of organic solvents or mixture of solvents in capillary electrophoresis is gaining wider attention. The electroosmotic flow mobility of eight organic solvents (acetonitrile, acetone, dimethylformamide, dimetylsulphoxide, propylene carbonate, methanol, ethanol, n-propanol) and of mixtures of several solvents (methanol-acetonitrile, methanol-propylene carbonate, acetonitrile-propylene carbonate) has been studied. The influence of 1,3-alkylimidazolium salts in different solvents on the separation of different analytes has been investigated. Some of these salts have shown usefulness for matrix-assisted laser desorption ionization matrices and off-line analysis of electrophoresis fractions. It also appears that nonaqueous capillary electrophoresis with 1,3-alkylimidazolium salts as background electrolytes is suitable for separation small inorganic ions.  相似文献   

8.
将聚乙烯基-3-乙基咪唑溴盐离子液体用作毛细管电泳背景电解质添加剂,利用聚合离子液体的阳离子聚合物性质静电吸附到毛细管内表面,成功实现电渗流的有效反转,建立了共电渗流模式下5种核苷类化合物分离的新方法。考察了聚合离子液体浓度、pH值等因素对电渗流的影响。在优化实验条件下,3.1 min内实现了对5种核苷类化合物的快速高效分离;将该方法分别与不加添加剂和加入离子液体单体后的体系进行对比,结果表明,该方法大大缩短了5种核苷类化合物的分析时间,提高了分析效率,最高柱效达95万/m塔板数,分析物的迁移时间RSD均不高于0.38%。该方法简单、快速、重复性好,具有很好的应用前景。  相似文献   

9.
色谱分析中离子液体的应用及其测定   总被引:5,自引:0,他引:5  
高微  于泓  周爽 《色谱》2010,28(1):14-22
离子液体作为一种优良的溶剂越来越受到人们的关注。由于离子液体特殊的物理化学性质使其在色谱分析中也得到了较广泛的应用。本文综述了离子液体在气相色谱、高效液相色谱和毛细管电泳中的应用,其中包括离子液体作为气相色谱的固定相、高效液相色谱的固定相及流动相添加剂和毛细管电泳的电解质添加剂等,并对离子液体的色谱分离检测作了详细介绍。  相似文献   

10.
《Analytica chimica acta》2005,547(2):172-178
A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development.  相似文献   

11.
Ionic liquids (ILs) appear really attractive as electrolyte additives in nonaqueous capillary electrophoresis (NACE). These salts may offer new possibilities of interactions to modulate analyte effective mobilities. The presence of 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMIM NTf2) in acetonitrile/alcohol background electrolytes (BGEs) was investigated in this work. The aim of this study was to elucidate the influence of the IL concentration on the electrophoretic behavior of four arylpropionic acids and to identify the interactions between the analytes and the IL cation. The influence on mobility of the IL concentration, the nature and the proportion of the organic solvents, and the concentration of the ionic components of the BGE was first studied by a univariate approach. A four-factor D-optimal experimental design was then applied to provide a deeper insight into analyte interaction with IL cation present both free in BGE and adsorbed onto the capillary wall.  相似文献   

12.
This study represents the first application of Ag(I) charge transfer complexation in nonaqueous capillary electrophoresis. This method applies the principles of argentation chromatography to nonaqueous electrophoretic separations and is termed “nonaqueous argentation electrophoresis”. Since the separations are performed in 100% nonaqueous media, the advantages of nonaqueous solvents, such as enhanced solubility and flexibility in selectivity enhancement, compared to an aqueous or mixed hydroorganic solvent, are realized. A variety of compounds were separated. Qualitatively, the separation of eleven sulfonamides in 100% acetonitrile is shown to improve greatly upon the addition of Ag(I). These results also show that nonaqueous argentation electrophoresis provides fast, well-resolved separations of compounds, such as N-containing heterocyclics, that can selectively complex with Ag(I). Migration data and separation selectivities of these compounds by nonaqueous argentation electrophoresis were compared to previous aqueous argentation electrophoresis results. Selectivities were found to be significantly different for the two separation media. Ag(I) complexation provides an effective means of manipulating selectivity in nonaqueous capillary electrophoresis.  相似文献   

13.
In this study, nonaqueous capillary electrophoresis (NACE) was used to separate three open-cage fullerenes. Trifluoroacetic acid (TFA) was used as the nonaqueous background electrolyte to change the analytes’ mobilities. The selectivity and separation efficiency were critically affected by the nature of the buffer system, the choice of organic solvent, and the concentrations of TFA and sodium acetate (NaOAc) in the background electrolyte. The optimized separation occurred using 200 mM TFA/20 mM NaOAc in MeOH/acetonitrile (10:90, v/v), providing highly efficient baseline separation of the open-cage fullerenes within 5 min. The migration time repeatability for the three analytes was less than 1% (relative standard deviation). Thus, NACE is a rapid, useful alternative to high-performance liquid chromatography for the separation of open-cage fullerenes.  相似文献   

14.
Electrophoretic nuclear magnetic resonance (eNMR) is a powerful tool in studies of nonaqueous electrolytes, such as ionic liquids. It delivers electrophoretic mobilities of the ionic constituents and thus sheds light on ion correlations. In applications of liquid electrolytes, uncharged additives are often employed, detectable via 1H NMR. Characterizing their mobility and coordination to charged entities is desirable; however, it is often hampered by small intensities and 1H signals overlapping with major constituents of the electrolyte. In this work, we evaluate methods of phase analysis of overlapping resonances to yield electrophoretic mobilities even for minor constituents. We use phase-sensitive spectral deconvolution via a set of Lorentz distributions for the investigation of the migration behavior of additives in two different ionic liquid-based lithium salt electrolytes. For vinylene carbonate as an additive, no field-induced drift is observed; thus, its coordination to the Li+ ion does not induce a correlated drift with Li+. On the other hand, in a solvate ionic liquid with tetraglyme (G4) as an additive, a correlated migration of tetraglyme with lithium as a complex solvate cation is directly proven by eNMR. The phase evaluation procedure of superimposed resonances thus broadens the applicability of eNMR to application-relevant complex electrolyte mixtures containing neutral additives with superimposed resonances.  相似文献   

15.
A new application of the polymeric ionic liquid (PIL) in capillary electrophoresis is reported. Poly(1-vinyl-3-butylimidazolium bromide) was physically adsorbed on silica capillary as the simple and effective coating for capillary electrophoresis (CE) analysis, in which the PIL is not present in the background electrolyte. The electroosmotic flow (EOF) of the PIL-coated capillary as compared with that of the bare fused-silica capillary shows a different dependence on electrolyte pH values. The EOF is reversed over a wide pH range from 3.0 to 9.0 and shows good repeatability. It is also found that the coated capillary has a good tolerance to some organic solvents, 0.1 M NaOH and 0.1 M HCl. The PIL-coated capillary has been employed in different areas. Both the basic proteins and anionic analytes can be well separated by PIL-coated capillaries in a fast and easy way. The PIL-coated capillary is also able to separate organic acid additives in a grape juice. The results showed that this type of coating provides an alternative to the CE separation of anions and basic proteins.  相似文献   

16.
As novel solvents, ionic liquids have many applications in synthesis, catalysis and analytical separation, i.e. extraction and chromatography separation. In this paper, some amines including benzidine, benzylamine, N-ethylaniline and N,N′-dimethylaniline are separated using ionic liquids as additives for the mobile phase in high performance liquid chromatography (HPLC). The effects of the length of alkyl chain or counterions on different ionic liquids and their concentrations on the separation of these analytes are performed. The differences between ionic liquids and tetrabutylammonium bromide (TBA) on the separation of o-, m-, p-phthalic acids are compared and the results show that ionic liquids are ion-pair reagents in essence, although their hydrophobicity and hydrogen bonding also play important roles.  相似文献   

17.
Ethyl- and propylammonium nitrate are novel ionic solvents, liquid at room temperature, suitable for use as selective solvents for the isolation of analytes containing proton donor functional groups (alcohols, amines, phenols, carboxylic acids, etc.) by liquid-liquid distribution. These solvents form immiscible solvent pairs with non-polar aliphatic and aromatic hydrocarbons, ethers and alkyl halide solvents (e.g., methylene chloride, chloroform). Analytes can be recovered from the ionic solvents by back-extraction into ah organic solvent after dilution with water or pH buffer or, preferably, by extractive derivatization when gas chromatography is used for the analyses, avoiding the accumulation of salt on the column that results in poor baseline stability. Alkylation, acylation and particularly silylation are suitable methods for extractive derivatization using standard reaction conditions. Applications are presented for the isolation of polar analytes from an urban dust, shale oil and urine samples and for the determination of low-molecular-weight alcohols in gasahol and glycerol in soap. Liquid-liquid chromatographic systems with the liquid organic salt as stationary phase can be used to predict distribution constants for a particular separation and for the separation of polar solutes, particularly isomeric compounds possessing a proton donor functional group.  相似文献   

18.
Ionic liquids as electrolytes for nonaqueous capillary electrophoresis   总被引:2,自引:0,他引:2  
Acetonitrile is a well-suited medium for nonaqueous capillary electroseparations and enables extending the range of applications of capillary electrophoresis (CE) techniques to more hydrophobic species. In this study, the dialkylimidazolium-based low temperature melting organic salts know as "ionic liquids" (ILs) are used as electrolytes. At room temperature these liquids are miscible with acetonitrile which makes it easy to use them for adjustment of analyte mobility and separation. The anionic part as well as the concentration of an IL influence the general electrophoretic mobility of the buffer system. The separation of different analytes is achieved because they become charged in the presence of ILs in separation media. There is also a possibility for a complex formation between the solute and the electrolyte which alters the mobility of the solute. A selected application of separations of phenols and aromatic acids will be discussed.  相似文献   

19.
The enantiomers of 34 pharmaceutical weak-base analytes were separated by nonaqueous capillary electrophoresis in acidic methanol background electrolytes using the sodium salt of the new, single-isomer chiral resolving agent, octakis(2,3-O-dimethyl-6-O-sulfo)-gamma-cyclodextrin (ODMS). The effective mobilities, separation selectivities and peak resolution values of the weak-base analytes were determined as a function of the ODMS concentration in the 0-40 mM range and were found to follow the theoretical predictions of the charged resolving agent migration model (CHARM model) modified for ionic strength effects. Fast, efficient separations were achieved for both comparatively small and large enantiomers.  相似文献   

20.
Zhou L  Wang W  Wang S  Hui Y  Luo Z  Hu Z 《Analytica chimica acta》2008,611(2):212-219
A novel method based on separation by nonaqueous capillary electrophoresis (NACE) combined with laser-induced fluorescence (LIF) detection was developed and compared with classic aqueous modes of electrophoresis in terms of resolution of solutes of interest and sensitivity of the fluorescence detection. Catecholamines derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) were chosen as test analytes for their subtle fluorescence properties. In aqueous systems, capillary zone electrophoresis (CZE) was not suitable for the analysis of test analytes due to complete fluorescence quenching of NBD-labeled catecholamines in neat aqueous buffer. The addition of micelles or microemulsion droplets into aqueous running buffer can dramatically improve the fluorescence response, and the enhancement seems to be comparable for micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC). As another alternative, NACE separation was advantageous when performing the analysis under the optimum separation condition of 20 mM sodium tetraborate, 20 mM sodium dodecyl sulfate (SDS), 0.1% (v/v) glacial acetic acid, 20% (v/v) acetonitrile (ACN) in methanol medium after derivatization in ACN/dimethyl sulfoxide (DMSO) (3:2, v/v) mixed aprotic solvents containing 20 mM ammonium acetate. Compared with derivatization and separation in aqueous media, NACE-LIF procedure was proved to be superior, providing high sensitivity and short migration time. Under respective optimum conditions, the NACE procedure offered the best fluorescence response with 5-24 folds enhancement for catecholamines compared to aqueous procedures. In addition, the mechanisms of derivatization and separation in nonaqueous media were elucidated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号