首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive basicity study of alpha,omega-alkanediamines and related bases has been carried out. Basicities in acetonitrile (AN, pK(a) values), tetrahydrofuran (THF, pK(alpha) values), and gas phase (GP, GB values), were measured for 16, 14, and 9 diamine bases and for several related monoamines. In addition the gas-phase basicities and equilibrium geometries were computed for 19 diamino bases and several related monoamines at the DFT B3LYP 6-311+G** level. The effects of the different factors (intrinsic basicity of the amino groups, formation of intramolecular hydrogen bonds, and molecular strain) determining the diamine basicities were estimated by using the method of isodesmic reactions. The results are discussed in terms of molecular structure and solvation effects. The GP basicity is determined by the molecular size and polarizability, the extent of alkylation, and the energy effect of intramolecular hydrogen bond formation in the protonated base. The basicity trends in the solvents differ very much from those in GP: 1) The solvents severely compress the basicity range of the bases studied (3.5 times for the 1,3-propanediamine family in AN, and 7 times in THF), and 2) while stepwise alkylation of the basicity center leads to a steady basicity increase in the gas phase, the picture is complex in the solvents. Significant differences are also evident between THF and AN. The high hydrogen bond acceptor strength of THF leads to this solvent favoring the bases with "naked" protonation centers. In particular, the basicity order of N-methylated 1,3-propanediamines is practically inverse to that in the gas phase. The picture in AN is intermediate between that of GP and THF.  相似文献   

2.
The intrinsic acidity and basicity of a series of beta-chalcogenovinyl(thio)aldehydes HC([double bond]X)[bond]CH[double bond]CH[bond]CYH (X=O, S; Y=Se, Te) were investigated by B3LYP/6-311+G(3df,2p) density functional and G2(MP2) calculations on geometries optimized at the B3LYP/6-31G(d) level for neutral molecules and at the B3LYP/6-31+G(d) level for anions. The results showed that selenovinylaldehyde and selenovinylthioaldehyde should behave as Se bases in the gas phase, because the most stable neutral conformer is stabilized by an X[bond]H...Se (X=O, S) intramolecular hydrogen bond (IHB). In contrast the Te-containing analogues behave as oxygen or sulfur bases, because the most stable conformer is stabilized by typical X...Y[bond]H chalcogen-chalcogen interactions. These compounds have a lower basicity than expected because either chalcogen-chalcogen interactions or IHBs become weaker upon protonation. Similarly, they are also weaker acids than expected because deprotonation results in a significantly destabilized anion. Loss of the proton from the X[bond]H or Y[bond]H groups is a much more favorable than from the C[bond]H groups. Therefore, for Se compounds the deprotonation process results in loss of the X[bond]H...Se (X=O, S) IHBs present in the most stable neutral conformer, while for Te-containing compounds the stabilizing X...Y[bond]H chalcogen-chalcogen interaction present in the most stable neutral conformer becomes repulsive in the corresponding anion.  相似文献   

3.
The gas-phase basicities (GBs) of nornicotine, nicotine, and model pyrrolidines have been measured by FT-ICR. These experimental GBs are compared with those calculated (for the two sites of protonation in the case of nicotine and nornicotine) at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d,p) level, or those estimated from substituent effects on the GBs of 2-substituted pyrrolidines, 2-substituted N-methylpyrrolidines, and 3-substituted pyridines. It is found that, in contrast to the Nsp(3) protonation in water, in the gas phase nornicotine is protonated on the pyridine nitrogen, because the effects of an intramolecular CH.Nsp(3) hydrogen bond and of the polarizability of the 3-(pyrrolidin-2-yl) substituent add up on the Nsp(2) basicity, while the polarizability effect of the 2-(3-pyridyl) substituent on the Nsp(3) basicity is canceled by its field/inductive electron-withdrawing effect. The same structural effects operate on the Nsp(3) and Nsp(2) basicities of nicotine, but here, the polarizability effect of the methyl group puts the pyrrolidine nitrogen basicity very close to that of pyridine. Consequently, protonated nicotine is a mixture of the Nsp(3) and Nsp(2) protonated forms.  相似文献   

4.
5.
The gas phase basicities and pKa values in acetonitrile of azacalix[3](2,6)pyridine and its derivatives are determined by the B3LYP DFT method. It is found that all compounds of this series are neutral organic superbases. The proton attacks the inner pyridine N(sp2) atom, thus forming a bifurcated intramolecular hydrogen bond. The most powerful superbase is provided by the hexakis(dimethylamino) derivative of the title compound. Its gas phase proton affinity is 296.6 kcal mol-1, its basicity is 291.3 kcal mol-1, and its pKa(MeCN) is 30.9 units. [structure: see text]  相似文献   

6.
7.
胺丶醇丶醚类化合物气相碱性的CNDO/2计算   总被引:1,自引:0,他引:1  
The gas-phase basicities of compounds can be measured by their proton affinities. In this paper we he calculated the gas-phase basicities of about seventy compounds containing N or O by means of the method CNDO/2. For the alkylamines, alcohols, ethers and carbonyl compounds, computational results agree qualitatively with the experimental values. The sequences of gas-phase basicities for the series of these compounds are as follows: Et2NH>Me3N>t-BuNH2>Me2NH>i-PrNH2>n-BuNH2>n-PrNH2>EtNH2>MeNH2>NH3; Et2O>EtOMe>t-BuOH>Me2O>i-PrOH>n-BuOH>n-PrOH>EtOH>MeOH>H2O; n-PrCHO>EtCHO>MeCHO>HCHO; n-BuCO2H>n-PrCO2H>EtCO2H>MeCO2H>HCO2H; HCO2Bu-n>HCO2Pr-N>HCO2Et>HCO2Me>HCO2H Obviously, alkyl substitution plays a role to increase the gas-phase basicities. The squence of increasing effectiveness is t-Bu>i-Pr>n-Bu>n-Pr>Et>Me For the amines containing heteroatoms investigated here, the gas-phase basicities have the following order repectively: CH3NH2>NH2NH2>NH2OH>NH2F>NHF2>NF3 The gas-phase basicities of these compounds change regularly with various substitutents. For the aliphatic compounds, the gas-phase basicity increases with thosizo and the degree of branching of the alkyl groups. For the amines containing heteroatoms, the gas-phase basicity decreases with increasing of the electro-negativity of the substitutent. For the relationship between the gas-phase basksity and the charge distribution and the ionization potentials, the conclusions are as follows: (1) The gas-phase basicities of the homologous compounds are proportional to the electron density of the atom N or O, but those of Rn NH3-n and Rn OH2-n are inversely proportional to the electron denisty of atom N or O. This shows that the base strength of the molecule cannot be determined solely by the electron density of the individual atom. (2) In the protonation reaction the alkyl groups spread the charges from the charged center. This effect enables protonated cations to become more stable because of the charge distribution av  相似文献   

8.
The proton affinities of 2(5H)-furanone, 1 (836 kJ/mol), 5,6-dihydro-2H-pyran-2-one, 2 (862 kJ/mol), cyclopentenone, 3 (857 kJ/mol), and cyclohexenone, 4 (863 kJ/mol), have been measured by Fourier transform ion cyclotron resonance techniques. A comparison is made with (reexamined) data concerning saturated cyclic and unsaturated aliphatic analogs. Three general observations are made. First, the basicity is found to increase with the size of the ring. Second, unsaturated lactones are more basic than their corresponding aliphatic unsaturated esters. Third, unsaturated and saturated lactones have almost identical gas-phase basicities, while unsaturated and saturated lactones have almost identical gas-phase basicities, while unsaturated cyclic ketones are more basic than their saturated analogs. All these experimental findings have been rationalized by means of ab initio calculations up to the G2(MP2,SVP) level. The basicity trends along the series are the result of two main factors: the different hybridization pattern of the carbonyl carbon as the size of the ring changes and, in the case of lactones, the nonbonding interaction between the proton attached to the carbonyl group and the ether-like oxygen which contributes to the enhanced stability of the protonated form. For unsaturated ketones the C=C double bond participates fully in the change in charge distribution induced by the protonation, while for unsaturated lactones the existence of an oxygen atom within the ring impedes this shift of the electron density.  相似文献   

9.
A combined experimental and theoretical study on the gas-phase basicity and acidity of a series of cyanovinyl derivatives is presented. The gas-phase basicities and acidities of (N[triple chemical bond]C--CH==CH--X, X=CH(3), NH(2)) were obtained by means of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry techniques. The corresponding calculated values were obtained at the G3B3 level of theory. The effects of exchanging CH(3) for SiH(3), and NH(2) for PH(2), were analyzed at the same level of theory. For the neutral molecules, the Z isomer is always the dominant species under standard gas-phase conditions at 298 K. The loss of the proton from the substituent X was found systematically to be much more favorable than deprotonation of the HC==CH linking group. The corresponding isomeric E ion is much more stable than the Z ion, so that only the former should be found in the gas phase. The most significant structural changes upon deprotonation occur for the methyl and amino derivatives because, in both cases, deprotonation of X leads to a significant charge delocalization in the corresponding anion. Protonation takes place systematically at the cyano group, whereby the isomeric E ion is again more stable than the Z ion. Push-pull effects explain the preference of aminoacrylonitrile to be protonated at the cyano group, which also explains the high basicity of this derivative relative to other members of the analyzed series that present rather similar gas-phase basicities, GB approximately 780 kJ mol(-1), indicating that the different nature of the substituents has only a weak effect on the intrinsic basicity of the cyano group. The cyanovinyl derivatives have a significantly stronger gas-phase acidity than that of the corresponding vinyl compounds CH(2)==CH--X. This acidity-strengthening effect of the cyano group is attributed to the greater stabilization of the anion with respect to the corresponding neutral compound.  相似文献   

10.
Thioureas represent the dominant platform for hydrogen bond promoted asymmetric catalysts. A large number of reactions, reported in scores of publications, have been successfully promoted by chiral thioureas. The present paper reports the use of squaramides as a highly effective new scaffold for the development of chiral hydrogen bond donor catalysts. Squaramide catalysts are very simple to prepare. The (-)-cinchonine modified squaramide (5), easily prepared through a two-step process from methyl squarate, was shown to be an effective catalyst, even at catalyst loadings as low as 0.1 mol%, for the conjugate addition reactions of 1,3-dicarbonyl compounds to beta-nitrostyrenes. The addition products were obtained in high yields and excellent enantioselectivities.  相似文献   

11.
The photophysics of 4-(dimethylamino)pyridine (DMAP) has been investigated in different solvents in the presence of aliphatic and fluorinated aliphatic alcohols, respectively. For most systems, consecutive two-step hydrogen-bonded complex formation is observed in the presence of alcohols. Equilibrium constants are determined from UV spectroscopic results for the formation of singly and doubly complexed species. The resolved absorption and fluorescence spectra for the singly and doubly complexed DMAP are derived by means of the equilibrium constants. Exceptionally large hydrogen bond basicity values are found for the ground and singlet excited DMAP molecules. In n-hexane, as a consequence of complex formation, the intramolecular charge transfer (ICT) emission becomes dominant over of the locally excited fluorescence; the fluorescence and triplet yields increase considerably with complexation. In polar solvents, both the fluorescence and triplet yields of the complex are much smaller than that of the uncomplexed DMAP. The dipole moments derived for the singly complexed species from the Lippert-Mataga analysis are much larger than those of the uncomplexed molecules. However, for the relaxed ICT excited-state one obtains different dipole moments in apolar and polar solvents. This may be explained by a conformational change of the molecule in the ICT excited state from planar geometry in apolar solvent to the perpendicular structure (characterized with bigger dipole moment) in polar solvent.  相似文献   

12.
The gas-phase basicities of a group of multidentate polyamines have been determined by the bracketing method and range from 966 to 1021 kJ/mol. The compounds studied vary in the number and kind of basic sites, the number and orientation of carbon atoms, and the degree of flexibility. These important structural features were analyzed to understand the observed trends in basicity and semiempirical calculations were undertaken that support the experimental trends. The polyamines may find use as reference compounds for future gas-phase basicity measurements of larger, biologically active molecules such as peptides and proteins.  相似文献   

13.
Free energy changes (DeltaG degrees , copper cation basicity) for the reaction L(2)Cu(+) = Cu(+) + 2L were obtained in the gas phase for substituted pyridines based on the measurement of ligand-exchange equilibria in a Fourier transform ion cyclotron resonance (FT-ICR) spectrometer. For 3- and 4-substituted pyridines, the relative copper cation basicities (DeltaCCB[L(2)Cu(+)]) were linearly correlated with the corresponding gas-phase proton basicities (DeltaGB) with a slope of 1.01. On the basis of a linear relationship between the calculated copper cation basicities of dimeric and monomeric complexes at MP2/6-311+G(2p,2d)//B3LYP/6-311G*, DeltaCCB[L(2)Cu(+)](calcd) = 1.54DeltaCCB[LCu(+)](calcd), the substituent effect on the DeltaCCB for the first ligand was estimated to be 0.66 times smaller than the corresponding DeltaGB. A comparison with the corresponding results for other Lewis cation basicity of the pyridine system showed that the magnitude of the substituent effect decreases in the order H(+) (1.00) > Me(3)Si(+) (0.95) > Cl(+) (0.83) > Cu(+) (0.66) > Li(+) (0.47). This change was associated with the natural charges at the Lewis cation moiety and the natural atomic orbital (NAO) bond order of the M+-N bond of the complex ion, indicating the decrease in covalent character of the M(+)-N bond in this order. Furthermore, when a variety of neutral bases such as amines, carbonyl compounds, and ethers were included in a comparison between CCB[L(2)Cu(+)] and GB, it was found that there is a good linear relationship with significant deviations of small molecules and bulky tributylamine, which is attributed to their different steric environment at the binding sites from others, while there is no simple linear relationship with the lithium cation basicities (LCB). The similarity of the substituent effect between CCB[L(2)Cu(+)] and GB reflects the covalent character in the Cu(+) interaction. In conclusion, although the ionic (ion-dipole interaction) nature of the Cu(+) interaction results in a smaller substituent effect than that for the protonation, the covalent nature also plays an important role in the Cu(+) interaction with neutral molecules.  相似文献   

14.
O O bond homolysis in hydrogen peroxide (H2O2) has been studied using theoretical methods of four conceptually different types: hybrid DFT (B3LYP, M06‐2X), double‐hybrid DFT (B2‐PLYP), coupled‐cluster (CCSD(T)), and multiconfigurational (CASPT2). In addition, the effects of basis set size have also been analyzed. For all of these methods, the O O bond homolysis in hydrogen peroxide has been found to proceed through hydrogen bonded radical pair complexes. Reaction barriers for collapse of the radical pairs to hydrogen peroxide are minute, leading to an overall very flat potential energy surface. However, hydrogen bonding energies in the radical pair complex expressed as the energy difference to two separate hydroxyl radicals are sizeable and exceed 10 kJ/mol for all theoretical methods considered in this study. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
The equilibrium geometrical parameters, enthalpies of the formation of compounds and radicals, and the dissociation energies of the O–NO2 bond for nitroesters of mono- and polyatomic aliphatic alcohols have been determined by the density functional B3LYP method. The basic tendencies in the changes of parameters of the geometrical and electronic structure of molecules, enthalpies of the formation and dissociation energies have been analyzed. Various mechanisms of the initial event of the gas-phase decomposition of nitroesters of mono- and polyatomic aliphatic alcohols have been studied.  相似文献   

16.
The interaction of a large set of bases covering a wide range of the basicity scale with HZSM5 medium-size zeolites has been investigated through the use of two model clusters, namely 5T and 7T:63T. The 5T cluster has been treated fully ab initio at the B3LYP level, whereas the 63T cluster has been treated with the ONIOM2 scheme using the B3LYP:MNDO combination for geometry optimizations and B3LYP:HF/3-21G for adsorption energies. The optimized geometries of the different hydrogen bond (HB) and ion pair (IP) complexes obtained with both models are rather similar. However, there are significant dissimilarities as far as the adsorption energies are concerned, in particular when dealing with IP clusters whose intrinsic stability is largely underestimated when the simpler 5T model is used. 5T clusters could be used to obtain reasonable estimates of adsorption energies provided these are scaled by a factor of 1.1 for HB complexes and 1.4 for IP complexes. The zeolite cavity favors the proton transfer process, similarly to that found by third polar partners in gas-phase HB trimers. The intrinsic basicity of the base and its adsorption energy within the zeolite are correlated. From this correlation, is possible to conclude that, in general, bases with proton affinities (PA) larger than 200 kcal mol(-1) should lead to the formation of IPs, whereas bases with PA smaller than this value should form HB complexes.  相似文献   

17.
NIR-FT Raman and FT-IR spectra of the crystallized biologically active molecule N,N′-diphenylguanidinium nitrate (DGN) have been recorded and analyzed using quantum chemical computations based on density functional theory. The extraordinary basicity and strong stability of this novel bioactive compound has been discussed as the consequence of resonance stabilization leading to Y-aromaticity and hydrogen bonding. This peculiar Y-delocalization character of DGN is well reflected in the optimized geometry and bond order (BO) calculations. The observance of the equality of C–N bond lengths in the protonated species indicates delocalization of the π-electron system. The spectroscopic and natural bonds orbital (NBO) analysis confirms the occurrence of strong network of inter molecular hydrogen bonds. The changes in electron density in the global minimum and in the energy of hyperconjugative interactions of DGN calculated by second order perturbation theory have been studied extensively in comparison with the values of the neutral species. The observed characteristic ring vibrations are well fit with the theoretical values calculated at B3LYP/6-31G* level.  相似文献   

18.
19.
《Liquid crystals》1989,5(4):1203-1211
The magnitude and direction of the spontaneous polarization in most ferroelectric liquid crystals have been confirmed to be determined by the location and magnitude of the bond moment around the chiral carbon and the core. In compounds with several bond moments their relative orientation is very important for obtaining a large spontaneous polarization. Compounds with benzene rings in the core substituted with OH also have a large spontaneous polarization, perhaps due to the formation of hydrogen bonds. Reversal of the direction of the spontaneous polarization with temperature has been found for EFPPOPB. This anomalous behaviour has been explained tentatively in terms of a conformation change due to the existence of a flexible -CH2- unit between the chiral carbon and the dipole moment.  相似文献   

20.
The nature of the metalloporphyrin-ligand complexes produced by zinc, magnesium and cobalt porphyrins with basic ligands has been investigated using the diamagnetic ring current shifts of the porphyrin on the ligand protons. The metal to nitrogen bond lengths in some metallo-meso-tetraphenylporphyrin (pyridine) complexes have been determined and compared with the data of the crystalline complexes. The geometry of the Zn meso-tetraphenylporphyrin complexes with 2-picoline, quinoline and isoquinoline has been investigated. Steric interactions between the ligand and the porphyrin in 2-picoline and quinoline produce a dramatic increase in the Zn? N bond length when compared to the unstrained analogues pyridine and isoquinoline. This large increase is associated with comparatively minor angle distortions in the complex. The specificity of the Zn meso-tetraphenylporphyrin complexation shifts has been determined for a range of benzyl and butyl compounds. The complexation shift is linearly related to the basicity of the ligand for a wide range of basicities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号