首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
采用近红外光谱分析技术,对不同切面粗皮桉木材的微纤丝角进行快速预测研究.使用X射线衍射仪测定了粗皮桉木材生长锥尤疵小试样的微纤丝角,并用近红外光谱仪采集试样的近红外漫反射光谱,对粗皮桉木材径切面和弦切面原始光谱进行二阶导数预处理并选择一定光谱段建立回归模型.以至少159个试样作为校正集建立木材微纤丝角的偏最小二乘法校正模型,使用交互验证法进行验证.结果表明,两个切面粗皮按木材的微纤丝角与近红外光谱之间有较好的相关性.利用近红外光谱分析方法可以实现不同切面粗皮桉木材无疵小试样微纤丝角的快速预测.  相似文献   

2.
近红外光谱法预测粗皮桉木材气干密度的影响因素分析   总被引:1,自引:0,他引:1  
采用近红外光谱分析技术,对粗皮桉木材气干密度校正模型的影响因素进行比较研究.使用直接测量法测量了粗皮桉木材的气干密度,并用近红外光谱仪采集试样的近红外漫反射光谱,对不同切面、厚度、含水率和粗糙度的粗皮桉木材试样的原始光谱进行二阶导数预处理并选择一定光谱段建立回归模型.以50~140个试样作为校正集建立木材气干密度的偏最...  相似文献   

3.
楸树(Catalpa bungei)木材纹理通直、材性优良、用途广泛,是中国特有的珍贵材树种。研究木材重要的力学性质——抗弯性质的快速测定方法可以为楸树木材的遗传改良及加工利用提供科学依据。以楸树无性系新品种“洛楸1号”、“洛楸4号”和“天楸2号”为试验材料,依据国家标准抗弯性质测试方法,测定楸树木材抗弯强度(MOR)和抗弯弹性模量(MOE)。利用近红外光谱(NIRs)分析结合偏最小二乘法(PLS)对新选育的三个楸树无性系的抗弯性质进行预测,探究基于不同采谱切面、不同预处理方法以及不同采谱点的最佳建模方法。研究结果表明,基于两切面平均光谱建立的抗弯强度预测模型的相关系数和相对分析误差最高为0.843和1.88,建立的抗弯弹性模量预测模型的相关系数和相对分析误差最高为0.846和1.88。选用两切面光谱,预处理方法按抗弯强度模型性能排序为多元散射校正与卷积平滑结合算法(MSC+S-G)>二阶导数与卷积平滑结合算法(2ndDer+S-G)>一阶导数与卷积平滑结合算法(1stDer+S-G),预处理方法按抗弯弹性模量模型性能排序为MSC...  相似文献   

4.
光谱预处理对近红外光谱预测木材纤维素结晶度的影响   总被引:9,自引:4,他引:9  
木材纤维素结晶度是木质材料的一个重要性质,它与树木的生长特性、结构与化学组成均有密切关系,并对木材的杨氏模量、尺寸稳定性、密度和硬度等具有重要的影响,文章研究了利用近红外光谱结合多变量数据分析技术对人工林木材纤维素的结晶度进行预测的能力。本研究从人工林湿地松木粉试样的表面采集近红外漫反射光谱,并利用X射线衍射法测定了木材纤维素的结晶度。研究表明,采用一阶导数和二阶导数光谱预处理没有提高近红外模型的预测效果,而采用原始光谱的预测效果最好,预测值与X射线衍射测定值的相关系数r可以达到0.950,各项预测误差值较低, 说明采用近红外光谱结合多变量数据分析方法建立的结晶度预测模型具有理想的预测能力。  相似文献   

5.
近红外光谱用于杉木木材强度分等的研究   总被引:3,自引:0,他引:3  
利用近红外光谱技术对木材强度分等进行了研究.选择 1000~1400 nm波段,结合偏最小二乘法,在木材强度和近红外光谱数据间建立了校正模型,校正模型的相关系数(r)为0.89,校正标准误差(SEC)为6.30 MPa.利用校正模型对35个未知样品的强度进行预测,根据近红外预测值和实测值分别对木材样品进行分等,A级预测...  相似文献   

6.
为实现温度不稳定环境下木材含水率的近红外光谱检测,探究了不同温度下木材近红外光谱的变化规律及温度变化对近红外预测木材含水率的影响。对从林场采集的樟子松、水曲柳、大青杨和红松原木木块试样各75块,共计300块试样,进行了不同温度和含水率条件下的近红外光谱采集。采用单一温度下的校正集分别与各个温度下的验证集建立偏最小二乘含水率预测模型,探究温度变化对木材含水率模型预测准确性的影响。比较了不同光谱预处理的木材含水率预测温度全局模型。采集相同含水率下不同温度的近红外光谱数据,对光谱进行光谱平均、一次微分、主成分分析和偏最小二乘判别分析,以探究温度变化时,木材近红外光谱的变化规律。结果显示:(1)温度对木材样品光谱存在显著影响;主成分分析和判别分析表明不同温度下的样品有明显聚类趋势,温度判别准确率为96.1%。温度会影响木材的近红外光谱在特定波长吸收峰的位置及吸光度,在含水率相同的情况下,随着温度的升高,特定位置吸收峰有逐渐向高频波段转移的趋势且在零下低温时波峰移动变化更明显。(2)不同温度下的PLS含水率预测模型对温度变动的适应能力有差异,木材含水率预测模型更适应于检测与建模样本相同温度的样品...  相似文献   

7.
木材表面光泽度的近红外漫反射光谱技术快速测定研究   总被引:2,自引:0,他引:2  
表面光泽度是天然高分子材料(如木材)及其制品的重要视觉参数之一,实现天然高分子材料及其制品表面光泽度的快速测定对其表面质量的在线控制与评价具有重要意义。为了实现近红外光谱技术对木材表面光泽度的快速测定以及拓宽近红外光谱技术在高分子材料表面质量控制领域的应用,本研究利用近红外光谱技术结合偏最小二乘法对天然高分子材料木材表面光泽度的模型预测值与实测值的相关性进行研究,探讨了近红外漫反射光谱技术快速测定天然高分子材料木材表面光泽度的可行性。结果表明:(1)木材表面光泽度与其近红外漫反射光谱密切相关,说明木材表面近红外光谱特征中包含表面光泽度的信息;(2)通过偏最小二乘法建立木材表面光泽度的近红外光谱预测模型,模型对木材表面光泽度的预测值与实测值的相关系数可达0.90;(3)通过改变采谱光纤与木材样品表面的夹角获得不同的漫反射光谱数据,分别建立不同的木材表面光泽度预测模型发现,采集光谱的光纤与样品表面的角度变化对结果影响不显著,光纤与样品表面夹角为90°时的结果相对较好。  相似文献   

8.
人工神经网络结合近红外光谱用于木材树种识别   总被引:2,自引:0,他引:2  
测量了不同产地及品种的89个木材样品的近红外光谱,并分别使用反向传播人工神经网络(back propagation artificial neural networks,BPANN)与广义回归神经网络(generalized regression neural network,GRNN)建立了NIRS树种识别模型。通过方差分析分别选择两种神经网络所用参数,并采用最优参数进行网络训练。考虑到样品光谱的差异,对含不同水平白噪声与不同水平偏置的光谱进行模拟,并使用建立的模型对模拟光谱进行预测。发现两种神经网络模型均有较好的预测结果,其中BPANN模型,对含偏置水平不高于2%、噪声水平不高于4%的模拟光谱识别正确率在97%以上;GRNN模型,对含偏置水平不高于2%、噪声水平不高于4%的模拟光谱识别正确率在99%以上。  相似文献   

9.
木材和水分关系的研究一直以来都是木材学研究领域的重点课题。木材中水分含量变化会使木材产生干缩湿胀,进而影响其尺寸稳定性,这关系到木材的实际应用。一般认为,木材产生变形的根本原因是木材化学组分中多糖类物质所含羟基与水分形成氢键作用的结果,而近红外光谱对有机材料含氢基团具有高度的敏感性。利用这一特点,为了能够实现对木材尺寸变化的在线快速检测,应用近红外光谱(near infrared,NIR)探讨了不同含水率木材与其尺寸稳定性之间的相互关系并建立了木材尺寸变化预测模型。通过对不同含水率下木材三个切面进行近红外扫描得到光谱信息,结合化学计量学方法,建立基于偏最小二乘法的木材径、弦向尺寸变化率的近红外光谱模型,并采用交叉检验的方式对模型进行验证。结果表明:不同含水率条件下的木材径、弦向尺寸变化率与相应的近红外光谱有很高的相关性,说明可以通过近红外光谱来研究木材的尺寸变化;研究建立的木材径、弦向尺寸变化模型的相关系数都大于0.90,均具有比较好的适用性;通过比较横切面上建立的径、弦向尺寸变化率模型,弦向好于径向。以上结果表明利用近红外光谱技术对木材的尺寸变化进行快速、准确的预测具有较好的可行性。  相似文献   

10.
木材的种类识别是木材加工和贸易的一个重要环节,传统的木材种类识别方法主要有显微检测法和木材纹理识别法,其操作繁琐,耗时长,成本高,不能满足当前需求。本研究利用木材的近红外光谱(NIRS)结合模式识别方法,以期实现木材种类的快速准确识别。采用近红外光谱结合主成分分析法(PCA)、偏最小二乘判别分析法(PLSDA)和簇类独立软模式法(SIMCA)三种模式识别对58种木材进行种类鉴别研究;5点平滑、标准正态变量变换(SNV)、多元散射校正(MSC)、Savitzky-Golay一阶导数(SG 1st-Der)和小波导数(WD)五种光谱预处理方法用于木材光谱的预处理;校正集和测试集样品的正确识别率(CRR)用于模型的评价。采用PCA方法,通过样品的前三个主成分空间分布图分辨木材种类的聚类情况。在建立PLSDA模型,原始光谱的正确识别率最高,分别为88.2%和88.2%;5点平滑处理的光谱校正集和测试集的CRR分别为88.1%和88.2%;SNV处理的光谱校正集和测试集的CRR分别为84.4%和84.5%;MSC处理的光谱校正集和测试集的CRR分别为83.1%和84.2%;SG 1st-Der处理的光谱校正集和测试集的CRR分别为81.8%和82.7%;WD(小波基为“Haar”,分解尺度为80)处理的光谱校正集和测试集的CRR分别为87.3%和87.2%。可知,在PLSDA模型中,木材光谱未经预处理种类识别效果最后好。在建立SIMCA模型过程中,原始光谱的校正集和测试集的CRR分别为99.7%和99.4%;5点平滑处理的光谱校正集和测试集的CRR分别为100%和100%;SNV处理的光谱校正集和测试集的CRR分别为99.5%和99.1%;MSC处理的光谱校正集和测试集的CRR分别为99.0%和98.4%;SG 1st-Der的光谱校正集和测试集的CRR分别为81.8%和82.7%;WD处理的光谱校正集和测试集的CRR分别为100%和100%。可知,在SIMCA模型中,木材光谱经平滑和小波导数处理后的识别效果最好,且光谱的校正集和测试集CRR都为100%。采用三种模式结合五种不同的预处理方法对木材近红外光谱进行定性建模识别时,由于木材样本属性复杂,主成分分布图相互交织,PCA无法识别出58种木材;原始光谱的PLSDA模型可以得到较好的判别模型,但校正集和测试集的CRR只有88.2%和88.2%;木材光谱经过5点平滑或WD预处理后的SIMCA模型可达到最好的识别效果,校正集和测试集的CRR均为100%,且WD-SIMCA模型因子数比5点平滑SIMCA模型小,模型更为简化,故WD-SIMCA为58种木材种类识别的最优模型。研究表明光谱预处理方法可以有效的提高木材种类识别精度,有监督模式识别方法SIMCA可以用来建立有效的木材识别模型,近红外光谱结合模式识别可以为木材种类的识别提供一种快速简便的分析方法。  相似文献   

11.
木材不同切面的近红外光谱信息与密度快速预测   总被引:9,自引:3,他引:9  
用近红外光谱对木材密度进行了研究。发现木材三个不同切面(横切面、径切面、弦切面)的近红外光谱有较大的差异;结合偏最小二乘法(PLS),根据三个切面采集到的光谱数据与木材密度建立了校正模型,横切面预测集的相关系数r为0.94,径切面和弦切面分别为0.85和0.81。结果表明,从横切面采集到的光谱建立的预测模型效果最好。用该模型对随机抽取、未参与建模的15个样品的密度进行了预测,r2=0.977, 标准偏差:STDEV=0.006。  相似文献   

12.
利用近红外光谱和X射线衍射技术分析木材微纤丝角   总被引:4,自引:6,他引:4  
利用近红外光谱和X射线衍射法对木材的微纤丝角进行了快速预测。微纤丝角是影响木材性质的最重要的物理量之一,木材资源利用和林木品质改良都要求能快速、方便地测定木材的微纤丝角。 该实验首先利用X射线衍射仪,快速测量和计算出154个杉木木材样品的微纤丝角。然后,依据木材不同成分在近红外区的不同吸收特性,在近红外光谱数据与X射线衍射仪测定的微纤丝角之间建立相关模型。结果表明,二者之间具有很好的相关性,其校正模型和预测模型的相关系数(r2)分别达到0.867和0.816。  相似文献   

13.
红木的近红外光谱分析   总被引:1,自引:0,他引:1  
红木珍贵、种类多,大多数人对红木种类及真伪难以或无法鉴别。利用近红外光谱技术对国家标准中八类红木的近红外光谱进行分析,研究结果表明:(1)近红外光谱与红木色度学参数(L*,a*和b*)之间存在非常高的相关性,预测值与实测红木L*,a*和b*值的相关性分别达到0.988,0.991和0.993;(2)利用化学计量学中的主成分分析(PCA)方法可以将八类红木清楚地区分成八个相应的类别,利用三个主成份信息绘制的三维PCA得分图比二维图更能直观地展现八类红木的区别。研究结果说明应用近红外光谱技术识别红木类别具有可行性,这为开发红木的鉴定或识别提供新的方法和研究思路。  相似文献   

14.
近红外光谱分析技术在木材材性分析中的研究进展   总被引:1,自引:0,他引:1  
树木基因工程研究在改变木材材性等方面取得了较大的进展,且发挥着重要的作用。为了选育优良品种,需要测试大量的试样。但传统的木材性质测试方法成本高、效率低,而且需要破坏树木本身,这种方法已经无法满足现代林木培育和木材加工利用的需要。为了更高效地控制和检测转基因产品的各种性质,必须有快速而又方便的测定技术。近红外光谱分析技术是一项新的木材无损评价方法,能够迅速、准确地对木材性质进行全面无损评价,目前已经在很多领域得到广泛应用。文章详细地介绍了近红外光谱技术在木材化学组成分析和木材微观结构预测中的研究进展。  相似文献   

15.
基于近红外光谱的玉米籽粒CNCPS组分分析及预测研究   总被引:2,自引:0,他引:2  
试验旨在研究应用近红外光谱技术快速测定玉米籽粒粉末CNCPS组分的可行性。65个样品来自黑龙江省,选用偏最小二乘法(PLS)为建模方法,采用二阶导数和Norris导数滤波法处理光谱数据后,建立了玉米籽粒粉末中干物质(DM)、粗蛋白质(CP)、粗脂肪(Fat)、粗灰分(Ash)、淀粉(Starch)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、可溶性蛋白(SP)、酸性洗涤不溶蛋白(ADIP)和中性洗涤不溶蛋白(NDIP)等的近红外预测模型。其中DM,CP,Fat,Ash,Starch,NDF和ADF的决定系数分别为0.974 3,0.968 3,0.947 8,0.909 8,0.977 7,0.935 4和0.926 9,标准差(SD)与预测均方根(RMSEP)的比值(SD/RMSEP)值分别为3.96,4.78,3.75,4.25,4.13,3.88和3.12。SP的决定系数为0.857 5,SD/RMSEP值为3.06。ADIP和NDIP的决定系数分别为0.531 9和0.683 3,SD/RMSEP值分别为5.50和2.85。试验结果表明,近红外技术可以用于玉米籽粒粉末CNCPS组分的快速测定,但降低ADIP和NDIP测定误差有待进一步研究。  相似文献   

16.
杉木综纤维素和木质素的近红外光谱法测定   总被引:14,自引:2,他引:14  
用近红外光谱法对杉木中综纤维素和木质素含量进行了快速测定。用常规湿化学方法测定了48个杉木木材样品的综纤维素和木质素,用近红外光谱仪采集相应的光谱,进行二阶微分处理和平滑预处理后,用偏最小二乘法和完全交互验证方式建立相应预测模型。综纤维素校正模型和预测模型的相关系数分别为0.96和0.93;预测标准误差分别为0.39和0.50;木质素校正模型和预测模型的相关系数分别为0.99和0.90;预测标准误差分别为0.10和0.28。结果表明,近红外光谱法可以快速分析木材中综纤维素和木质素含量。  相似文献   

17.
近红外光谱预测猕猴桃硬度模型的简化研究   总被引:6,自引:0,他引:6  
为简化猕猴桃硬度的预测模型,利用标准正态变量变换对猕猴桃1 000~2 500 nm近红外光谱进行预处理,在优选建模波段和采用净分析物预处理(NAP)降低建模主因子数两个方面简化猕猴桃硬度偏最小二乘(PLS)模型。结果表明,优选5 189~5 370 cm^-1,4 549~4 620 cm^-1,6 049~6 230 cm^-1,6 999~7 730 cm^-1,6 249~6 614 cm^-1等5个波段进行建模,NAP/PLS模型性能最佳,主因子数为5,校正集相关系数R2和均方根误差RMSECV分别为0.819 41和0.701 77,预测集相关系数R2和均方根误差RMSEP为0.780 67和0.882 71。与简化前的PLS模型相比,模型不仅更加简洁,而且预测能力和精度均有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号