首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switchgrass is a high yielding perennial grass that has been designated as a potential energy crop. One method of converting switchgrass to energy is by thermochemical conversion to syngas. This requires that the rate of thermal decomposition of switchgrass and the rate of production of components of the syngas be quantified. Ground switchgrass was pyrolyzed at heating rates of 10–40 °C/min in a thermogravimetric analyzer coupled to a Fourier Transform infrared spectrometer. The amount of gases (ppm) that were volatilized during the duration of experiment was quantified. The pyrolysis process was found to compose of four stages: moisture evaporation, hemicellulose decomposition, cellulose decomposition and lignin degradation. The peak temperature for hemicellulose (288–315 °C) and cellulose degradation (340–369 °C) increased with heating rate. FTIR analysis showed that the following gases were given off during the pyrolysis of switchgrass: carbon dioxide, carbon monoxide, acetic acid, ethanol, and methane.  相似文献   

2.
The pyrolysis characteristics and kinetics of sewage sludge for different sizes (d < 0.25 mm, 0.25 mm < d < 0.83 mm, and d > 0.83 mm) and heating rates (5, 20, and 35 °C/min) were investigated in this article. The STA 409 was utilized for the sewage sludge thermogravimetric analysis. FTIR analysis was employed to study the functional groups and intermediates during the process of pyrolysis. Meanwhile, a new method was developed to calculate pyrolysis kinetic parameters (activated energy E, the frequency factor A, and reaction order n) with surface fitting tool in software MATLAB. The results show that all the TG curves are divided into three stages: evaporation temperature range (180–220 °C), main decomposition temperature range (220–650 °C), and final decomposition temperature range (650–780 °C). The sewage sludge of d < 0.25 mm obtains the largest total mass loss, especially at the heating rate of 5 °C/min. By FTIR analysis, the functional groups including NH, C–H, C=C, etc., are all found in the sewage sludge. There is a comparison between the FTIR spectra of sludge heated to 350 °C (temperature associated to maximum devolatilization rate in the second stage) and the FTIR spectra of sludge heated to 730 °C (temperature associated to maximum devolatilization rate in the third stage). In the second stage, the alcohols, ammonia, and carboxylic acid in the sludge have been mostly decomposed into gases, and only a little bit of compounds containing CH and OH of COOH exist. The pyrolysis kinetic parameters of second stage are as follows: the reaction orders are in the range of 1.6–1.8 and the activation energy is about 45 kJ/mol. The frequency factor increases with the increase of heating rate and sewage sludge size.  相似文献   

3.
The thermal decomposition process and pyrolysis products of poly(vinyl phenyl ketone) (PVPK) were investigated by thermogravimetric analysis (TGA) and on-line pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS). TGA showed a largest weight loss rate around 380 °C. Py-GC–MS was used for the qualitative analysis of the pyrolysis products at 350, 500, 600, 700 and 850 °C. The major volatile thermal decomposition product was found to be 1-phenyl-2-propenone, which dominated all other volatile species especially under the least severe pyrolysis conditions (<600 °C). At higher temperatures a much wider range of pyrolysis products was obtained. The results have been interpreted assuming that primary random chain scission reactions occur followed by typical unzipping mainly producing monomer units; detachment of the side-group occurs only under more severe pyrolysis conditions. Py-GC–MS showed to be effective in PVPK detection in ink and paint formulations.  相似文献   

4.
Paper industry generates a considerable amount of wastes. Their composition mainly depends on the type of paper produced and the origin of cellulose fibres. Nowadays, in Spain, 40% of solid wastes generated by the paper and pulp industry are deposited directly in landfill, 25% are used in the agriculture, 13% in the ceramic industry and 7% in the concrete production. In the last years, thermal treatment methods like combustion, pyrolysis and gasification have been widely study as alternative techniques for the valorization of different organic waste materials. The main objective of the present work is to study the pyrolysis behaviour of different paper mill waste materials. For this reason, a wide characterization of eight paper mill waste materials from different origins was performed using SEM, FTIR, DRX and thermogravimetric techniques. Paper mill sludges from recycled paper, mainly wastes obtained from deinking process, showed high CaCO3 and clays contents. Compared with the elevated total organic matter content (TOM) of paper mill waste materials their low organic carbon content determined by Cr2O72− oxidation reveals the elevated chemical stability of organic matter, due to high content on cellulose fibres. Analysis of samples by SEM indicates that successive recycled processes of paper leads to paper mill waste materials with more degraded fibres. XRD analyses show as crystalline cellulose was present in reject and primary sludge from paper mills that produced paper from virgin wood. However, crystalline cellulose content significantly decreased in waste materials from recycled paper. Finally, thermogravimetric analysis indicates that presence or mineral matter and degradation of cellulose significantly influences their pyrolysis behaviour. In general, weight loss of paper mill waste materials started at lower temperatures than pure cellulose. In waste materials from recycled paper weight loss continues at temperatures highest than 500 °C due to kaolinite dehydration and carbonates decomposition.  相似文献   

5.
生物质主要组分低温热解研究   总被引:21,自引:2,他引:19  
利用热重分析仪和裂解气质联用仪进行生物质主要组分低温热解特性研究。热重实验结果表明,生物质主要组分的热稳定性为:纤维素>木质素>半纤维素。半纤维素主要热解温度在210℃~320℃,而纤维素和木质素的主要热解温度分别在310℃~390℃和200℃~550℃。裂解气质联用实验考察不同温度对生物质主要组分低温热解产物的影响。半纤维素热解产物主要有乙酸、1-羟基-丙酮和1-羟基-2-丁酮,纤维素热解产物主要包括左旋葡聚糖和脱水纤维二糖,而木质素热解产物主要是邻甲氧基苯酚。  相似文献   

6.
The main objective of the present study is to study the behaviour of sewage sludge and biochar from sewage sludge pyrolysis after addition to soil in a context of a temperate agricultural soil. For this, an incubation experiment was designed during 200 days. Carbon mineralization of soil amended with sewage sludge and biochar at two different rates (4 and 8 wt%) was evaluated. Differential thermal analysis, thermogravimetry and the first derivate of the TG were performed in oxidizing conditions on soil samples before and after incubation. Biochar obtained from sewage sludge pyrolysis at 500 °C was more stable in soil than original sewage sludge. After incubation experiment, the reduction of soil organic matter content was significantly lower in soil amended with biochar than in soil amended with sewage sludge. The thermostability index WL3/WL2 decreases after incubation in soil amended with biochar, however it increases in case of soil treated with sewage sludge.  相似文献   

7.
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

8.
The pyrolysis behaviors of corn stalk and its three real components (i.e. hemicellulose, cellulose, and lignin) have been investigated with the techniques of TG-MS and Py-GC/MS. The thermal behavior and the evolution profiles of major volatile fragments from each sample pyrolysis have been discussed in depth, while paying close attention to the impact and contributions of each component on the raw material pyrolysis. It was found that pyrolysis of the corn stalk was a comprehensive reflection of its three main components both on thermogravimetric characteristics and on products distribution and their formation profiles. Hemicellulose definitely made the greatest contribution to the formation of acids and ketones at around 300 °C. Cellulose was more dedicated to the products of furans and small molecule aldehydes in a short temperature range 320–410 °C. While lignin mainly contributed to produce phenols and heterocyclic compounds over a wider temperature range 240–550 °C. The experimental results obtained in the present work are of interest for further studies on selective fast pyrolysis of biomass into energy and chemicals.  相似文献   

9.
The approach to remove green house gases by pumping liquefied carbon dioxide several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite, artinite and if the ferric iron is present brugnatellite are possible; thus necessitating a study of the thermal stability of such minerals. The thermal stability of two carbonate bearing minerals dypingite and artinite together with brugnatellite with a hydrotalcite related formulae have been characterised by a combination of thermogravimetry and evolved gas mass spectrometry. Artinite is thermally stable up to 352 °C. Two mass loss steps are observed at 219 and 355 °C. Dypingite decomposes at a similar temperature but over a large number of steps. Brugnatellite shows greater stability with decomposition not occurring until after 577 °C. The thermal decomposition of brugnatellite occurs over a number of mass decomposition steps. It is concluded that pumping liquefied green house gases into magnesium bearing mineral deposits is feasible providing a temperature of 350–355 °C is not exceeded to prevent escape of CO2 towards the surface. In contrast, the water loss occurring at lower temperatures could have a positive effect on the geosequestration of CO2 as it probably causes a decrease in the molar volume of secondary carbonate minerals and consequently an increase in aquifer porosity.  相似文献   

10.
A Pb(Zr,Ti)O3 precursor gel made from a sol prepared using 1,1,1,-tris(hydroxymethyl)ethane, lead acetate and zirconium and titanium propoxides, stabilised with acetylacetone, was analysed using TGA–FTIR analysis. Decomposition under nitrogen (N2) gave rise to evolved gas absorbance peaks at 215 °C, 279 °C, 300 °C and 386 °C, but organic vapours continued to be evolved, along with CO2 and CO until 950 °C. The final TGA step in N2 is thought to relate to decomposition of an intermediate carbonate phase and the final elimination of residues of triol or acetylacetonate species which form part of the polymeric gel structure. By contrast, heating in air promoted oxidative pyrolysis of the final organic groups at ≤450 °C. In air, an intermediate carbonate phase was decomposed by heating at 550 °C, allowing Pb(Zr,Ti)O3 to be produced some 400 °C below the equivalent N2 decomposition temperature.  相似文献   

11.
Summary The disposal of used automotive tires has caused many environmental and economical problems to most countries. We propose the use of rice husk as filler for increasing the value of recycled tire rubber. Thermal degradation of both components and their sintering mixtures is presented in this paper. Thermal decomposition of rice husk occurs in various steps in the temperature range between 150 and 550°C. This complex process is the result of the overlapping of thermal decomposition of the three major constituents common in all lignocellulosic materials, i.e., hemicellulose, lignin and cellulose. Hemicellulose is degraded at temperatures between 150 and 350°C, cellulose from 275 to 380°C and lignin from 250 to 550°C. The degradation process of major constituents of scrap tires or their composites is observed at temperatures between 150 and 550°C. For composites, the addition of rice husk (maximum 25%) produces an increase in the mass loss rate. This effect is higher as the amount of rice husk increases. However, the degradation initial temperature of elastomeric matrix is not affected with addition of rice husk. Apparent kinetic parameters were also studied by the isoconversional Friedman method. We observed that the addition of rice husk produces a decrease in apparent activation energy for low conversions (up to 0.6). For higher conversions this decrease was not so clearly observed.  相似文献   

12.
Pyrolysis of lignocellulosic biomass leads to an array of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose, cellulose and lignin, different temperatures may be applied for a step-wise degradation into valuable chemicals. Staged degasification experiments were conducted with deciduous (beech, poplar), coniferous (spruce) and herbaceous (straw) biomass. Thermogravimetry was used to estimate appropriate temperatures for a two-stage degradation process that was subsequently evaluated on bench-scale by moving bed and bubbling fluidised bed pyrolysis experiments. Degasification in two consecutive stages at 250–300 °C and 350–400 °C leads to mixtures of degradation products that originate from the whole biomass. The mixtures that were generated at 250–300 °C, predominantly contain hemicellulose degradation products, while the composition of the mixtures that were obtained at 350–400 °C, is more representative for cellulose. Lignin-derived fragments are found in both mixtures. Yields up to 5 wt% of the dry feedstock are obtained for chemicals like acetic acid, furfural, acetol and levoglucosan. Certain groups of thermal degradation products like C2–C4 oxygenates and phenols are formed in yields up to 3 wt%. Highest yields have been obtained for beech wood. Staged degasification is a promising pyrolysis-based route to valorise lignocellulosic biomass. Clear opportunities exist to increase product yields and selectivities by optimisation of reactor conditions, application of catalysts and specific biomass pretreatments like demineralisation and pre-hydrolysis.  相似文献   

13.
Vyazovkin's model-free kinetic algorithms were applied to determine conversion, isoconversion and apparent activation energy to both dehydration and combustion of sugarcane bagasse. Three different steps were detected with apparent activation energies of 76.1 ± 1.7, 333.3 ± 15.0 and 220.1 ± 4.0 kJ/mol in the conversion range of 2-5%, 15-60% and 70-90%, respectively. The first step is associated with the endothermic process of drying and release of water. The others correspond to the combustion (and carbonization) of organic matter (mainly cellulose, hemicellulose and lignin) and the combustion of the products of pyrolysis.  相似文献   

14.
The application of municipal sewage sludge as fertilizer in the production of non-food energy crops is an environmentally and economically sustainable approach to sewage sludge management. In addition, the application of municipal sewage sludge to energy crops such as Miscanthus x giganteus is an alternative form of recycling nutrients and organic material from waste. Municipal sewage sludge is a potential source of heavy metals in the soil, some of which can be removed by growing energy crops that are also remediation agents. Therefore, the objective of the research was to investigate the effect of municipal sewage sludge applied at three different rates of 1.66, 3.22 and 6.44 t/ha on the production of Miscanthus. Based on the analyses conducted on the biomass of Miscanthus fertilized with sludge from the wastewater treatment plant in three fertilization treatments, it can be concluded that the biomass of Miscanthus is a good feedstock for the process of direct combustion. Moreover, the application of the largest amount of municipal sewage sludge during cultivation had no negative effect on the properties of Miscanthus biomass. Moreover, the cellulose and hemicellulose content of Miscanthus is ideal for the production of second-generation liquid biofuels. Fertilizer treatments had no effect on the content of cellulose and lignin, while a significant statistical difference was found for hemicellulose.  相似文献   

15.
Pyrolysis of textile wastes: I. Kinetics and yields   总被引:1,自引:0,他引:1  
Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104–156 °C and the final reaction temperature is within 423–500 °C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135–309, 276–394 and 374–500 °C, respectively. The first two might be associated with either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 °C, the expected amount of volatiles of this waste is within 85–89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 °C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases.  相似文献   

16.
17.
应用TGA-FTIR研究不同来源污泥的燃烧和热解特性   总被引:9,自引:0,他引:9  
在空气气氛下,利用热重分析方法研究了三种不同来源的污泥燃烧特性。探讨水处理工艺和污泥处理工艺对污泥中有机物的分布影响和燃烧特性影响。研究发现,污水厌氧工艺和污泥厌氧工艺均导致结构复杂、燃烧温度高的有机物生成。在氮气气氛下利用热重红外联用技术,对比研究了同种污泥的热解和燃烧特性,污泥热解主要发生有机物裂解成小分子和小分子的挥发,氧气的存在加速了污泥的裂解。污泥热解温度200℃~500℃,主要气体H2O、CO2、CO以及甲烷等烃类,CO2在高温750℃还存在一个析出峰,由于无机碳酸盐的分解。  相似文献   

18.
There has been much interest in the utilization of biomass-derived fuels as substitutes for fossil fuels in meeting renewable energy requirements to reduce CO2 emissions. In this study, the pyrolysis characteristics of biomass have been investigated using both a thermogravimetric analyzer coupled with a Fourier-transform infrared spectrometer (TG-FTIR) and an experimental pyrolyzer. Experiments have been conducted with the three major components of biomass, i.e. hemicellulose, cellulose, and lignin, and with four mixed biomass samples comprising different proportions of these. Product distributions in terms of char, bio-oil, and permanent gas are given, and the compositions of the bio-oil and gaseous products have been analysed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC). The TG results show that the thermal decomposition of levoglucosan is extended over a wider temperature range according to the interaction of hemicellulose or lignin upon the pyrolysis of cellulose; the formation of 2-furfural and acetic acid is enhanced by the presence of cellulose and lignin in the range 350-500 °C; and the amount of phenol, 2,6-dimethoxy is enhanced by the integrated influence of cellulose and hemicellulose. The components do not act independently during pyrolysis; the experimental results have shown that the interaction of cellulose and hemicellulose strongly promotes the formation of 2, 5-diethoxytetrahydrofuran and inhibits the formation of altrose and levoglucosan, while the presence of cellulose enhances the formation of hemicellulose-derived acetic acid and 2-furfural. Pyrolysis characteristics of biomass cannot be predicted through its composition in the main components.  相似文献   

19.
In the present study, conventional and multivariate methods were used to optimize conditions for direct determination of aluminum in soft drinks by electrothermal atomic absorption spectrometry. For the conventional method, the optimized experimental parameters were: pyrolysis and atomization temperatures and chemical modifier. A multivariate study was performed using factorial design and the optimized parameters were the same employed in the univariate method including pyrolysis time. For the conventional method, the optimal conditions obtained were: pyrolysis temperature of 1600 °C, atomization temperature of 2700 °C, and Zr as permanent modifier. For the factorial design in the multivariate optimization, the Pareto´s chart showed that the atomization temperature, the modifier, and the pyrolysis temperature presented a significant effect on the integrated absorbance and the interaction between pyrolysis temperature and pyrolysis time also had a significant effect on the signal. Better results were obtained using Zr as modifier. The surface response indicates that the lowest pyrolysis (1100 °C) and atomization temperatures (2350 °C) provide higher absorbance for aluminum in soft drinks. Characteristic mass of 23.4 and 19.4 pg and LOD of 17.9 and 11.3 μg L− 1 was obtained to conventional and multivariate methods, respectively. The calibration was accomplished with standard addition in a range of 60–200 μg L− 1 for conventional method and of 38–200 μg L− 1for multivariate method with R higher than 0.99 for both conditions. Recoveries in both studies were nearly 100% with adequate precision for GFAAS analysis. For the Al concentrations level found in soft drinks, both experimental conditions are adequate as good results were obtained in recovery studies. The Al concentrations in different soft drinks range from 147.9 to 599.5 μg L−1. Higher concentrations were found in soft drinks sold in Al cans than in PET bottles, indicating that contamination can occur.  相似文献   

20.
污泥与煤和煤矸石共燃特性研究   总被引:4,自引:2,他引:2  
利用STA 409 PC型同步热分析仪,对煤、煤矸石和污泥不同质量比样品的燃烧过程进行了热重分析。结果表明,单一煤和煤矸石的DTG曲线都只有一个明显的失重峰,污泥的DTG曲线有两个明显的失重峰,而混合物的DTG曲线都有两个失重峰。通过分析不同样品的混燃过程,发现随着煤所占质量比的增加,最大失重峰速率所对应的温度都有所降低。煤、煤矸石、污泥及其混合物的活化能为16.93kJ/mol~109.89kJ/mol。随着污泥所占质量比的增加,混合物的着火温度有所降低,当达到70%时,污泥与煤混合物的着火点接近单一污泥的着火点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号