首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In Part I [Int. J. Solids Struct., 2003], we described the implementation of the extended finite element method (X-FEM) within Dynaflow™, a standard finite element package. In our implementation, we focused on two-dimensional crack modeling in linear elasticity. For crack modeling in the X-FEM, a discontinuous function and the near-tip asymptotic functions are added to the finite element approximation using the framework of partition of unity. This permits the crack to be represented without explicitly meshing the crack surfaces and crack propagation simulations can be carried out without the need for any remeshing. In this paper, we present numerical solutions for the stress intensity factor for crack problems, and also conduct crack growth simulations with the X-FEM. Numerical examples are presented with a two-fold objective: first to show the efficacy of the X-FEM implementation in Dynaflow™; and second to demonstrate the accuracy and versatility of the method to solve challenging problems in computational failure mechanics.  相似文献   

2.
In this paper, the extended finite element method (X-FEM) is considered for the analysis of fretting fatigue problems. A two-dimensional implementation of the X-FEM is carried out within the finite element software ABAQUS? by means of user subroutines, and crack propagation in fretting fatigue problems is investigated. On utilizing the non-linear contact capabilities of this code, the numerical technique is applied to a specimen-indenter model. The use of the X-FEM facilitates very accurate stress intensity factor computations on relatively coarse meshes, and furthermore, no remeshing is required for crack growth simulations. The implementation is applied to complete and incomplete contact fretting problems. A study of crack growth is conducted for several bulk loads applied to the specimen, and the influence of the initial crack angle is ascertained. The numerical simulations reveal the merits of applying the X-FEM to fretting fatigue problems.  相似文献   

3.
The extended finite element method (X-FEM) is a numerical method for modeling strong (displacement) as well as weak (strain) discontinuities within a standard finite element framework. In the X-FEM, special functions are added to the finite element approximation using the framework of partition of unity. For crack modeling in isotropic linear elasticity, a discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are used to account for the crack. This enables the domain to be modeled by finite elements without explicitly meshing the crack surfaces, and hence quasi-static crack propagation simulations can be carried out without remeshing. In this paper, we discuss some of the key issues in the X-FEM and describe its implementation within a general-purpose finite element code. The finite element program Dynaflow™ is considered in this study and the implementation for modeling 2-d cracks in isotropic and bimaterial media is described. In particular, the array-allocation for enriched degrees of freedom, use of geometric-based queries for carrying out nodal enrichment and mesh partitioning, and the assembly procedure for the discrete equations are presented. We place particular emphasis on the design of a computer code to enable the modeling of discontinuous phenomena within a finite element framework.  相似文献   

4.
Nowadays, numerical simulation of 3D fatigue crack growth is easily handled using the eXtended Finite Element Method coupled with level set techniques. The finite element mesh does not need to conform to the crack geometry. Most difficulties associated to complex mesh generation around the crack and the re-meshing steps during the possible propagation are hence avoided. A 3D two-scale frictional contact fatigue crack model developed within the X-FEM framework is presented in this article. It allows the use of a refined discretization of the crack interface independent from the underlying finite element mesh and adapted to the frictional contact crack scale. A stabilized three-field weak formulation is also proposed to avoid possible oscillations in the local solution linked to the LBB condition when tangential slip is occurring. Two basic three-dimensional numerical examples are presented. They aim at illustrating the capacities and the high level of accuracy of the proposed X-FEM model. Stress intensity factors are computed along the crack front. Finally an experimental 3D ball/plate fretting fatigue test with running conditions inducing crack nucleation and propagation is modeled. 3D crack shapes defined from actual experimental ones and fretting loading cycle are considered. This latter numerical simulation demonstrates the model ability to deal with challenging actual complex problems and the possibility to achieve tribological fatigue prediction at a design stage based on the fatigue crack modeling.  相似文献   

5.
The general solution of stresses is derived for a T-shaped junction of two thin plates with an adhesion crack.The plates are orthotropic.A shear force is applied on the crack surface.The analysis is based on the supposition that the stresses in each plate can be approximated by a plane stress condition.The results obtained are verified by numerical calculation of FEM.  相似文献   

6.
The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid numerical instability issues associated with artificial added mass effects, which are often encountered by standard loosely coupled (LC) and tightly coupled (TC) algorithms, when modeling the FSI response of flexible structures in incompressible flow. The artificial added mass effect is caused by the lag in exchange of interfacial displacements and forces between the fluid and solid solvers in partitioned algorithms. The artificial added mass effect is much more prominent for light/flexible structures moving in water, because the fluid forces are in the same order of magnitude as the solid forces, and because the speed at which numerical errors propagate in an incompressible fluid. The new HC algorithm avoids numerical instability issues associated with artificial added mass effects by embedding Theodorsen’s analytical approximation of the hydroelastic forces in the solution process to obtain better initial estimates of the displacements. Details of the new HC algorithm are presented. Numerical validation studies are shown for the forced pitching response of a steel and a plastic hydrofoil. The results show that the HC algorithm is able to converge faster, and is able to avoid numerical instability issues, compared to standard LC and TC algorithms, when modeling the transient FSI response of a plastic hydrofoil. Although the HC algorithm is only demonstrated for a NACA0009 hydrofoil subject to pure pitching motion, the method can be easily extended to model general 3-D FSI response and stability of complex, flexible structures in turbulent, incompressible, multiphase flows.  相似文献   

7.
In this paper, a new computational technique is presented based on the eXtended Finite Element Method (X-FEM) in pressure-sensitive plasticity of powder compaction considering frictional contact. In X-FEM, the need for mesh adaption to discontinuity interface is neglected and the process is accomplished by partitioning the domain with some triangular sub-elements whose Gauss points are used for integration of the domain of the elements. The technique is applied by employing additional functions, which are added to approximate the displacement field of the elements located on the interface. The double-surface cap plasticity model is employed within the X-FEM framework in numerical simulation of powder material. The plasticity model includes a failure surface and an elliptical cap, which closes the open space between the failure surface and hydrostatic axis. The moving cap expands in the stress space according to a specified hardening rule. The frictional behavior of contact between two bodies is modeled by using the X-FEM technique and applying the Heaviside enrichment function. The application of X-FEM technique in simulation of pressure-sensitive material is presented in an incremental manner and the role of sub-elements in simulation of contact treatment is demonstrated. Finally, several numerical examples are analyzed with special reference to plasticity forming of powder compaction.  相似文献   

8.
In this paper, a new method for level set update is proposed, in the context of crack propagation modeling with the extended finite element method (X-FEM) and level sets. Compared with the existing methods, such as the resolution of the Hamilton–Jacobi equations, this new method is much simpler because it does not required complex manipulations of the level sets. This method, called the “projection” method, uses both a classical discretization of the surface of the crack (segments for 2d cracks and triangles for 3d cracks) and a level set representation of the crack. This discretization is updated with respect to the position of the new crack front. Then the level sets are re-computed using the true distance to the new crack, by an orthogonal projection of each node of the structure onto the new crack surface. Then, numerical illustrations are given on 2d and 3d academic examples. Finally, three illustrations are given on 3d industrial applications.  相似文献   

9.
A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows.The numerical simulation is performed by the CIP-based Cartesian grid method,which is described in the present paper.The tangent of hyperbola for interface capturing(THINC) scheme is applied for capturing complex free surfaces.The new model is capable of simulating a flow with violently varied free surface.A series of computations are conducted to assess the developed algorithm and its versatility.These tests include the collapse of water column with and without an obstacle,sloshing in a fixed tank,the generation of regular waves in a tank,the generation of extreme waves in a tank.Excellent agreements are obtained when numerical results are compared with available analytical,experimental,and other numerical results.  相似文献   

10.
Transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials (FGPMs) based on the extended finite element method (X-FEM) is presented. Both heating and cooling shocks are considered. The material properties are supposed to vary exponentially along specific direction while the crack-faces are assumed to be adiabatic and electrically impermeable. A dynamic X-FEM model is developed in which both Crank–Nicolson and Newmark time integration methods are used for calculating transient responses of thermal and electromechanical fields respectively. The generalized dynamic intensity factors for the thermal stresses and electrical displacements are extracted by using the interaction integral. The accuracy of the developed approach is verified numerically by comparing the calculated results with reference solutions. Numerical examples with mixed-mode crack problems are analyzed. The effects of the crack-length, poling direction, material gradation, etc. on the dynamic intensity factors are investigated. It shows that the transient dynamic crack behaviors under the cooling shock differ from those under the heating shock. The influence of the thermal shock loading on the dynamic intensity factors is significant.  相似文献   

11.
The determination of relevant constitutive crack propagation laws under dynamic loading is a rather challenging exercise. In dynamic impact cases, the variations of propagation parameters and the extractions of crack positions are difficult tasks. This paper focuses on a methodology for assessing dynamic crack propagation laws under impact loading for transparent materials. Dynamic brittle fracture experiments are performed on polymethyl methacrylate (PMMA) in which several crack arrest phases occur. Then, these experiments are numerically reproduced by using the eXtended Finite Element Method (X-FEM) in order to validate the algorithms and the criteria assumed.  相似文献   

12.
使用子域边界元法对受移动接触弹性体作用下的二维闭合裂纹问题进行了数值计算。由于两弹性体的接触界面和裂纹表面的接触范围的大小和接触状态事先是未知的 ,对此 ,在两个接触表面同时采用迭代的方法进行了求解。在裂纹的每个裂尖上都采用了四分之一的奇异单元以保证裂尖位移场和应力场奇异性的满足。用我们编制的二维裂纹问题程序对一些中心裂纹问题进行了计算 ,计算结果与经典断裂力学的理论值比较吻合。在无摩擦的条件下 ,对一些具有不同角度且受移动接触弹性体作用下的闭合裂纹问题进行了数值计算 ,得到了一些耦合作用下的应力强度因子的计算结果  相似文献   

13.
Study for 2D moving contact elastic body with closed crack using BEM   总被引:1,自引:0,他引:1  
Using a sub-regional boundary element method, an algorithm for the two-dimensional elastic bodies with a closed crack loaded by a moving contact elastic body is proposed. Since the extent and status of the contact surface of two elastic bodies and the crack within the body are all not known in advance, a double iterative contact algorithm is used. The BEM program for solving the closed crack problems is developed, some numerical examples are calculated, and the results of the center crack cases are shown to be in good agreement with the analytical solution in the classical fracture mechanics. In the condition of friction and non-friction, some coupling computational results of the SIF for the closed crack, with different angles and loaded by a moving contact elastic body, are also obtained by a numerical computation. The project supported by the National Natural Science Foundation of China (10172053) and NJTU Foundation of China (PD-157)  相似文献   

14.
The objective of this paper is to describe a simple dynamic crack propagation experiment which reproduces two phenomena: mixed-mode propagation and crack stop and restart. This experiment is explained and interpreted using X-FEM simulations. We show that a simple fracture theory which consists in using a dynamic crack initiation toughness, a crack orientation along the maximum principal stress and a simple equation for the calculation of the crack speed is sufficient to explain what is observed experimentally.  相似文献   

15.
The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severities, requiring only the information about the changes of a few lower natural frequencies. First, a damage quantification method is formulated and iterative approach is adopted for determining the damage extent. Then a damage localization algorithm is proposed, in which a damage indicator is formulated where unity value corresponds to the true damage scenario. Finally, numerical studies and model tests are conducted to demonstrate the effectiveness of the developed algorithm.  相似文献   

16.
In the present paper, the extended finite element method (X-FEM) is adopted to analyze vibrations of cracked plates. Mindlin’s plate theory taking into account the effects of shear deformation and rotatory inertia is included in the development of the model. First, conventional FEM without any discontinuity is carried out, then the enrichment proposed by Moës et al. (Int J Numer Methods Eng 46, 131–150, 1999) of nodal elements containing cracks is added to the FEM formulation. Numerical implementation of enriched elements by discontinuous functions is performed, and thus dynamic equations (stiffness and mass matrices) are established. A FORTRAN computer code based on the X-FEM formulation is hence developed. Rectangular and square plates containing through-edge and central cracks with different boundary conditions are considered. The subspace iteration method is used to solve the eigenvalue problem. Natural frequencies as well as the corresponding eigenfunctions are consequently calculated as a function of the crack length. The obtained results show that the X-FEM is an efficient method in the dynamic analysis of plates containing discontinuities.  相似文献   

17.
The focus of the present paper is on the finite element modelling of dynamic fracture based on the concept of locally enriched element shape functions in the vicinity of the crack, in line with the eXtended Finite Element Method (X-FEM). For this purpose, the proper governing equations for the case of a propagating crack within a hyperelastic material is established, including the definition of the concept of material motion which kinematically describes the progression of the crack. Furthermore, two different approaches to describe the material degradation and separation are proposed. The first approach, denoted the material crack driving force model, is based on the concept of material (or configurational) forces associated with the material motion. The basic motivation is that, in this context, a driving force is identified at the crack tip, which points in the direction of maximum energy release upon crack propagation. An additional interesting feature of this force is that the projection in the crack propagation direction corresponds to the energy released for such a propagation, whereby an intuitive criterion for crack propagation based on the direction and magnitude of this force is proposed. The second approach is based on the classical cohesive zone concept, extended to include rate effects to capture experimentally observed phenomena such as growing process zones during propagation as well as limited crack propagation speeds well below the theoretical limit. Both models are investigated and compared in a couple of numerical examples in the latter part of the paper, showing both the predictive capabilities as well as some limitations of the two approaches. It has also been shown that, for a specific set of parameters, the two models can reproduce (almost) the same response.  相似文献   

18.
Deforming a cracked magnetoelastic body in a magnetic field induces a perturbed magnetic field around the crack. The quantitative relationship between this perturbed field and the stress around the crack is crucial in developing a new generation of magnetism-based nondestructive testing technologies. In this paper, an analytical expression of the perturbed magnetic field induced by structural deforma- tion of an infinite ferromagnetic elastic plate containing a centered crack in a weak external magnetic field is obtained by using the linearized magnetoelastic theory and Fourier transform methods. The main finding is that the perturbed magnetic field intensity is proportional to the applied tensile stress, and is dominated by the displacement gradient on the boundary of the magnetoelastic solid. The tangential component of the perturbed magnetic-field intensity near the crack exhibits an antisymmetric distribution along the crack that reverses its direction sharply across its two faces, while the normal component shows a symmetric distribution along the crack with singular points at the crack tips.  相似文献   

19.
Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior. The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping. In this paper, we study a possible fracture mechanism of soft gels under uni-axial compression. We show that the surfaces of a pre-existing crack, oriented parallel to the loading axis, can buckle at a critical compressive stress. This buckling instability can open the crack surfaces and create highly concentrated stress fields near the crack tip, which can lead to crack growth. We show that the onset of crack buckling can be deduced by a dimensional argument com- bined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space. The critical compression for buckling was verified for a neo-Hookean material model using finite element simulations.  相似文献   

20.
Fatigue crack growth simulation in coated materials using X-FEM   总被引:1,自引:0,他引:1  
《Comptes Rendus Mecanique》2017,345(4):271-280
In the present work, the eXtended Finite Element Method (XFEM) is used to study the effect of bi-material interfaces on fatigue life in galvanised panels. X-FEM and Paris law are implemented in ABAQUS software using Python code. The XFEM method proved to be an adequate method for stress intensity factor computation, and, furthermore, no remeshing is required for crack growth simulations. A study of fatigue crack growth is conducted for several substrate materials, and the influence of the initial crack angle is ascertained. This study also compares the crack growth rate between three types of bi-materials alloys zinc/steel, zinc/aluminium, and zinc/zinc. The interaction between two cracks and fatigue life, in the presence of bi-material interface, is investigated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号