首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Zhou F  Johnston MV 《Electrophoresis》2005,26(7-8):1383-1388
An automated system for intact protein analysis is described that combines capillary isoelectric focusing (CIEF), reversed-phase liquid chromatography (RPLC), and electrospray ionization-mass spectrometry (ESI-MS). Performance is demonstrated with a complex yeast enzyme concentrate. CIEF is performed with a microdialysis membrane-based cathodic cell that permits pI fractions to be sampled and stored for subsequent LC-MS analysis. A total of 50 microg protein is loaded onto the capillary. Ten fractions are stored which span the pI range 3-10. Each fraction is subsequently cleaned on a reversed-phase trap column and then characterized by LC-MS. MaxEnt1 is used to deconvolute the raw mass spectra to obtain the molecular weight (MW) of intact proteins/peptides in the sample. A two-dimensional display of pI vs. MW is illustrated for the 500 most prevalent species as identified by MaxEnt1.  相似文献   

2.
A new protein fractionation technique based on off-gel isoelectric focusing (IEF) is presented, where the proteins are separated according to their isoelectric point (pI) in a multiwell device with the advantage to be directly recovered in solution for further analysis. The protein fractions obtained with this technique have then been characterized with polymer nanoelectrospray for mass spectrometry (MS) analyses or with Bioanalyzer for mass identification. This methodology shows the possibility of developing alternatives to the classical two-dimensional (2-D) gel electrophoresis. One species numerical simulation of the electric field distribution during off-gel separation is also presented in order to demonstrate the principle of the purification. Experiments with pI protein markers have been carried out in order to highlight the kinetics and the efficiency of the technique. Moreover, the resolution of the fractionation was shown to be 0.1 pH unit for the separation of beta-lactoglobulin A and B. In addition, the isoelectric fractionation of an Escherichia coli extract was performed in standard solubilization buffer to demonstrate the performances of the technique, notably for proteomics applications.  相似文献   

3.
A liquid-phase three-dimensional protein separation method has been developed that is used to separate the cytosolic fraction of a HEL cell lysate via isoelectric focusing (IEF), nonporous silica (NPS) reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS), respectively. Several hundred unique protein molecular weights were observed in a pI range from 4.8 to 8.5 and a mass range from 5 to 85 kDa. Proteins were positively identified by analysis of the pI (+/-0.5 pI units), an intact protein molecular weight (+/-150 ppm), and peptide mass mapping results. Using the molecular weight (MW) and peptide mapping results of identified proteins it was possible to characterize their posttranslational (PTMs) and/or sequence modifications. PTMs were detected on both forms of cytosolic actin, heat shock 90 beta, HINT and alpha-enolase. Sequence modifications or conflicts were observed for beta-and gamma-actin, ATP beta-synthase and heat shock 90 beta. IEF-NPS-RP-HPLC/ESI-TOFMS was used to determine experimental pI, MW and relative hydrophobicity values for each protein detected. This data was used to generate a 2-D pI-MS protein map, where proteins are displayed according to their pI and molecular weight. Protein molecular weight peaks are represented as bands in the 2-D pI-MS image where the gray scale of each band is proportional to the intensity of the protein molecular weight peak. In addition, a third hydrophobicity dimension (%B) was added as the % acetonitrile elution to generate a 3-D pI-MS-%B plot where each protein can be tagged according to three parameters.  相似文献   

4.
A molecular weight map of the protein content of ES2 human clear cell ovarian carcinoma cells has been produced using a two-dimensional (2-D) liquid separations/mass mapping technique. This method uses a 2-D liquid separation of proteins from whole cell lysates coupled on-line to an electrospray ionization-time of flight (ESI-TOF) mass spectrometer to map the accurate intact molecular weight (M(r)) of the protein content of the cells. The two separation dimensions involve the use of liquid isoelectric focusing as the first phase and nonporous silica reversed-phase high-performance liquid chromatography (HPLC) as the second phase of separation. The detection by ESI-TOF-MS provides an image of pI versus M(r) analogous to 2-D gel electrophoresis. Each protein is then identified based upon matrix-assisted laser desorption/ionization (MALDI)-TOF-MS peptide mapping and intact M(r) so that a standard map is produced against which other ovarian carcinoma cell lines can be compared. The accurate intact M(r) together with the pI fraction, and peptide map serve to tag the protein for future interlysate comparisons. An internal standard is also used to provide a means for quantitation for future interlysate studies. In the ES2 cell line under study it is shown that nearly 900 M(r) bands are detected over 17 pI fractions from pH 4 to 12 and a M(r) range up to 85 kDa and that around 290 of these bands can be identified using mass spectrometric based techniques. The protein M(r) is detected within an accuracy of 150 ppm and it is shown that many of the proteins in this human cancer sample are modified compared to the database. The protein M(r) map may serve as a highly reproducible standard Web-based method for comparing proteins from related human cell lines.  相似文献   

5.
Proteomic analysis has been widely used in elucidating the mechanism of diseases. As a classical proteomic approach, two-dimensional gel electrophoresis (2DGE) has been commonly applied in finding differentially expressed proteins through a first dimension of separation by the isoelectric point (pI) of proteins and a second dimension of separation according to the molecular weight (MW) of proteins. Compared to 2DGE, a recently developed commercial system from Beckman Coulter, the two-dimensional protein fractionation (PF2D), separates proteins according to the pI of proteins in the first dimension followed by a second dimension of separation according to the degree of protein hydrophobicity. As a liquid-based fractionation system, PF2D could facilitate the extraction and separation of broader protein categories and improve reproducibility and quantification as well as be less labor-intensive, which are usually identified as limitations of a gel-based 2DGE platform. This review evaluates the applications of the PF2D system and discusses the perspectives and advantages of PF2D in the investigation of cancer and genetic disorders and in protein mapping in human biological fluids and cell cultures.   相似文献   

6.
Gao Y  Chen C  Chai Z  Zhao J  Liu J  Zhang P  Heb aW  Huang Y 《The Analyst》2002,127(12):1700-1704
Synchrotron radiation X-ray fluorescence (SRXRF) spectroscopy is an advanced method of quantitative multielemental analysis with space resolution of several microm and sensitivities in the microg g(-1) range. It can be used for keeping track of trace elements after an electrophoretic separation of biological samples. In this paper, proteins in human liver cytosol were separated with gel filtration chromatography and thin layer isoelectric focusing (IEF). The contents of metal ions in protein bands were determined by SRXRF. The results showed that in the molecular weight (MW) range of 10 approximately 25 kDa, there were at least 2 Zn-containing bands with isoelectric point (pI) of 5 approximately 6 and 6.2 approximately 7, respectively and about 11 Fe-containing proteins with pI of 4.4, 4.6, 4.8, 5.0, 5.2, 5.3, 5.5, 5.6, 6.6, 6.8, and 7.2, respectively, present in human liver cytosol. The Zn-containing band with pI of 5-6 is the dominant species of zinc in this MW range. In addition, the Cu-containing bands with pI of 5.0 and below 4.8 were also detected. It is demonstrated that the procedure could be widely used in further investigations of the chemical species of trace elements in biological samples.  相似文献   

7.
A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 microg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis.  相似文献   

8.
《Electrophoresis》2017,38(16):2034-2041
High‐throughput mass spectrometry‐based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low‐molecular‐weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24‐wells device encompassing the pH range 3–10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI‐TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on‐line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom‐up proteomic approach with or without iTRAQ labeling.  相似文献   

9.
This paper presents the recently introduced Off-Gel electrophoresis (OGE) technology as a versatile tool to reproducibly fractionate intact proteins and peptides into discrete liquid fractions. The coupling of two stages of OGE, i.e., the separation of intact proteins in a first-stage followed by fractionation of peptides derived from each protein fraction after proteolysis in a second stage, results in an array of 15 x 15 fractions that are directly amenable to additional peptide fractionation like reverse-phase liquid chromatography (RPC). The analysis of all second-stage peptide fractions from only the first-stage protein fraction representing pH 5.0 -5.15 by on-line reverse-phase LC-tandem mass spectrometry resulted in the identification of 53 proteins (337 peptides), of which 10 were on different immunoglobulin (Ig) chains, with an input of only 1.5 mg human blood plasma proteins. Increasing the protein load to approximately 12 mg increased the number of identified proteins in the same protein fraction to 73 proteins (449 peptides), of which 15 were Ig-related. Immunodepletion of six of the most abundant proteins (albumin, transferrin, haptoglobin, IgG, IgA, and alpha-1-antitrypsin) prior to first-stage OGE with an input of 1.5 mg of protein (equivalent to approximately 10 mg nondepleted plasma) resulted in the identification of 81 proteins (660 peptides), of which three were still Ig fragments. The pI-based separation of peptides appears to be nonuniform based on the theoretically determined pI values of identified peptides. This observation specifically accounts for the neutral zone (pI 5-8) and can be accounted for by the physicochemical properties of the peptides given by their amino acid composition. The power of OGE separation of proteins and peptides is discussed with a focus on the use of the knowledge about the pI of proteins and peptides that assist the validation of correct identifications together with the retention time of peptides on RPC.  相似文献   

10.
The requirement for prefractionation in proteomic analysis is linked to the challenge of performing such an analysis on complex biological samples and identifying low level components in the presence of numerous abundant housekeeping and structural proteins. The employment of a preliminary fractionation step results in a reduction of complexity in an individual fraction and permits more complete liquid chromatography/mass spectrometry (LC/MS) analysis. Free flow electrophoresis (FFE), a solution-based preparative isoelectric focusing technique, fractionates and enriches protein fractions according to their charge differences and is orthogonal in selectivity to the popular reversed phase high performance liquid chromatography (HPLC) fractionation step. In this paper, we explored the advantages of a combination of FFE and liquid chromatography/mass spectrometry to extend the dynamic range of a proteomic analysis of a complex cell lysate. In this study, the whole cell lysate of a chronic myelogeneous leukemia cell line, K562/CR3, was prefractionated by FFE into 96 fractions spanning pH 3-12. Of these, 35 fractions were digested with trypsin and then analyzed by LC/MS. Depending on the algorithm used for peptide assignment from MS/MS data, at least 319 proteins were identified through database searches. The results also suggested that pI could serve as an additional criterion besides peptide fragmentation pattern for protein identification, although in some cases, a pI shift might indicate post-translational modification. In summary, this study demonstrated that free flow electrophoresis provided a useful prefractionation step for proteomic analysis and when combined with LC/MS allowed the identification of significant number of low level proteins in complex samples.  相似文献   

11.
A multi-chamber apparatus for preparative isoelectric focusing is described. The apparatus is constructed of 32 separation chambers and 2 electrode chambers, all separated by uncharged porous membranes. The total volume of the 32 separation chambers is 660 mL. A cooling system and a stirring system are built in. Human serum proteins were separated by isoelectric focusing in a natural pH gradient. The fractionation was monitored by fused rocket immunoelectrophoresis. The number of proteins in each fraction was monitored by crossed immunoelectrophoresis. The apparent pI values of IgG, transferrin and alpha-1-antitrypsin are as found in the literature. Orosomucoid (alpha-1-acid glycoprotein) (pI = 1.8) is concentrated at the acid end of the pH gradient.  相似文献   

12.
Proteomics relying on two-dimensional (2-D) gel electrophoresis of proteins followed by spot identification with mass spectrometry is an excellent experimental tool for physiological studies opening a new perspective for understanding overall cell physiology. This is the intriguing outcome of a method introduced by Klose and O'Farrell independently 25 years ago. Physiological proteomics requires a 2-D reference map on which most of the main proteins were identified. In this paper, we present such a reference map with more than 300 entries for Bacillus subtilis proteins with an isoelectric point (pI) between 4 and 7. The most abundant proteins of exponentially growing cells were compiled and shown to perform mainly housekeeping functions in glycolysis, tricarboxylic acid cycle (TCC), amino acid biosynthesis and translation as well as protein quality control. Furthermore, putative post-translational modifications were shown at a large scale, with 47 proteins in total forming more than one spot. In a few selected cases evidence for phosphorylation of these proteins is presented. The proteome analysis in the standard pI range was complemented by either stretching the most crowded regions in a narrow pH gradient 4.5-5.5, or by adding other fractions of the total B. subtilis proteome such as alkaline proteins as well as extracellular proteins. A big challenge for future studies is to provide an experimental protocol covering the fraction of intrinsic membrane proteins that almost totally escaped detection by the experimental procedure used in this study.  相似文献   

13.
对蛋白质在离子交换柱上选择民性和非吸附特性进行了研究。蛋白质在有机磷酸锆阳离子色谱柱上,其保留作用随流动相pH值在离子强度的增加而减小;蛋白质在强阳离子和强阴离子色谱柱上的保留作用,即是流动相中的pH值等于蛋白质的等当点,其净电荷为零。不册蛋白质仍有不同程度的保留,这主要是由于蛋白质的三维结构使电荷 密度的大小和分布的不均匀以及离子交换填料表面性质的影响。  相似文献   

14.
李贤煜  赵新元  应万涛  钱小红 《色谱》2013,31(9):831-837
分泌蛋白质组(secretome)是指在特定的时空条件下,细胞、组织等分泌的全部蛋白质。分泌蛋白质组可能包含了大量的疾病诊断生物标志物,因此其相关研究越来越受到重视。分泌蛋白质组的组成高度复杂且浓度范围宽,这对分析方法提出了挑战。建立有效的蛋白质或肽段预分离策略,将有利于分泌蛋白质的高覆盖率鉴定。本研究以肝癌细胞系MHCC97L的无血清培养分泌蛋白质为研究对象,采用一种新型等电聚焦预分离(OFFGEL)系统,考察了肽段水平的分级对蛋白质鉴定结果的影响。结果表明,分离后各馏分中肽段的等电点分布与理论预测基本一致,每个馏分中单独鉴定的肽段比例接近80%,显示了该系统对肽段的高分辨分离能力。结合生物质谱技术,在肝癌细胞分泌系统中鉴定了2995个蛋白质,显示了该系统在复杂体系蛋白质组研究中的应用潜力。  相似文献   

15.
Isoelectric focusing (IEF) of metallized and demetallized preparations of concanavalin A (Con A) consisting of either intact or fragmented subunits shows different band patterns. Metallized Con A consisting of intact polypeptide chains (intact Con A) has an isoelectric point (pI) 8.35. Metallized preparations consisting of fragmented chains (fragmented Con A) show three bands with pI values 8.0, 7.8 and 7.7. Demetallized intact Con A (intact apoCon A) has a pI of 6.5, however, it undergoes pH dependent association during IEF under certain conditions, which gives rise to multiple bands. Ampholyte-mediated demetallization of intact and fragmented Con A and subsequent aggregation of the apoprotein results in multiple bands during IEF in the presence of the pH range 3 to 10 ampholytes. However, ampholytes of the pH range 7 to 9 do not demetallize the proteins and show a single band with intact Con A. The pI of intact Con A remains essentially the same in the presence of inhibitory sugar. Furthermore, different moleculars forms of Con A, including locked and unlocked conformers of intact apoCon A, and the dimeric and tetramic states of both intact Con A and intact apoCon A have been identified and their pI values determined. IEF of the lentil isoelectins, LcH-A and LcH-B, shows single bands of pI 8.5 and 9.0, respectively. However, the native lectin mixture gives rise to an additional band of pI 8.8 due to a hybrid protein formed by ampholyte-mediated subunit exchange between the isolectins.  相似文献   

16.
We have elaborated a protocol for the fractionation of both hydrophilic and hydrophobic proteins using as a model the matrix and membrane compartments of highly purified rat liver peroxisomes because of their distinct proteomes and characteristic composition with a high quota of basic proteins. To keep highly hydrophobic proteins in solution, an urea/thiourea/detergent mixture, as used in traditional gel-based isoelectric focusing (IEF), was added to the electrophoresis buffer. Electrophoresis was conducted in the ProTeam free-flow electrophoresis (FFE) apparatus of TECAN separating proteins into 96 fractions on a pH 3-12 gradient. Consecutive sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that both matrix and the integral membrane proteins of peroxisomes could be successfully fractionated and then identified by mass spectrometry. This is documented by the detection of PMP22, which is the most hydrophobic and basic protein of the peroxisomal membrane with a pI > 10. The identification of 96 prominent spots corresponding to polypeptides with different physical and chemical properties, e.g., the most abundant integral membrane polypeptides of peroxisomes and specific ones of the mitochondrial and microsomal membrane, reflects the fractionation potential of free-flow (FF)-IEF, accentuating its value in proteomic research as an alternative perhaps superior to gel-based IEF.  相似文献   

17.
The proteomic analysis of plasma and serum samples represents a formidable challenge due to the presence of a few highly abundant proteins such as albumin and immunoglobulins. Detection of low abundance protein biomarkers therefore requires either the specific depletion of high abundance proteins using immunoaffinity columns and/or optimized protein fractionation methods based on charge, size or hydrophobicity. Here we describe a two-dimensional (2D) liquid chromatography separation method for the fractionation of rat plasma. In the first dimension proteins were separated by chromatofocusing according to their isoelectric point (pI). In the second dimension, proteins were further fractionated by non-porous, reversed-phase chromatography according to their hydrophobicity. The data from both separations was displayed as a 2D protein expression map of pI versus retention time (relative hydrophobicity). Both separations were carried out on the ProteomeLab PF 2D system (Beckman Coulter), an instrument platform that provides a high degree of automation and real-time monitoring of the separation process. The reproducibility of the first-dimension separation was evaluated in terms of pH gradient formation. The second-dimension separation was evaluated in terms of peak retention times on the reversed-phase column. We found in four consecutive chromatofocusing separations that the pH gradient differed by less than 0.2 pH units at any time during the elution step. Second dimension retention times of peaks from identical pI fractions differed by less than 7 s in six consecutive separations. Each 2D separation generated a total of 540 fractions which were analyzed by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). We detected approximately 275 peptides and proteins with molecular masses ranging from 3 to 225 kDa. Most fractions were found to contain multiple low and high molecular weight proteins. Differential display of 2D protein expression maps from retinol-sufficient and -deficient rat plasma samples identified a fraction with several proteins that appeared to be down-regulated in the vitamin A-deficient animal. Quantitative proteomic analysis of complex samples such as plasma is still a difficult task. We discuss the potential of this approach for biomarker discovery and address the experimental challenges that remain.  相似文献   

18.
Isolelectric focusing (IEF) of proteins on immobilized pH gradient (IPG) strips is an integral part of two-dimensional (2D) electrophoresis-based proteomics. Proteins can be effectively analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) on the intact strip itself, leading to the creation of a virtual 2D map giving pI and MW information, bypassing the second dimension SDS-PAGE. Further, trypsin digestion of proteins on the strip can significantly aid the identification of IPG-separated proteins. However, the small size of the peptides leads to diffusion along and outside the gel matrix. In this study, we describe a simple spray-based procedure to perform 'on-strip' trypsin digestion of proteins embedded in IPG strips. Examination of intact myoglobin and its tryptic peptides shows that post-digestion diffusion of tryptic peptides is significantly minimized using this approach.  相似文献   

19.
The use of low-molecular-mass color pI markers for the determination of pI values of proteins in gel isoelectric focusing (IEF) in combination with mass spectrometry is described. Different types of substituted phenols of known pI values within the mass range 250-400 were used here as pI markers. The pure, synthesized pI markers were studied by MALDI-TOF/TOF MS. Fragmentation studies of the pI markers were also performed. Only stable and well-characterized pI markers were used in this work. The selected pI markers were mixed with proteins, deposited on a gel and separated in a pH gradient. Color pI markers enable supervision of progress of the focusing process and also estimation of the position of the invisible focused bands. The separated bands of the pI markers (containing separated proteins) were excised, and the pI markers were eluted from each gel piece by water/ethanol and identified by MALDI-TOF/TOF MS. From the washed gel pieces the remaining carrier ampholytes were then washed out and proteins were in-gel digested with trypsin. The obtained peptides were measured by MALDI-TOF/TOF MS and the proteins identified via a protein database search. This procedure allows avoiding time-consuming protein staining and destaining procedures, which shortens the analysis time roughly by half. For comparison, IEF gels were stained with Coomassie Brilliant Blue R 250 and proteins in the gel bands were identified according to the standard proteomic protocol. This work has confirmed that our approach can give information about the correct pI values of particular proteins and shorten significantly the time of analysis.  相似文献   

20.
In this work, we demonstrate the potential use of immobilized pH gradient isoelectric focusing as a first dimension in shotgun proteomics. The high resolving power and resulting reduction in matrix ionization effects due to analyzing peptides with almost the exact same physiochemical properties, represents a significant improvement in performance over traditional strong cation-exchange first-dimensional analysis associated with the shotgun proteomics approach. For example, using this technology, we were able to identify more than 6000 peptides and > 1200 proteins from the cytosolic fraction of Escherichia coli from approximately 10 microg of material analyzed in the second-dimensional liquid chromatography-tandem mass spectrometry experiment. Sample loads on the order of 1 mg can be resolved to 0.25 isoelectric point (pI) units, which make it possible to analyze organisms with significantly larger genomes/proteomes. Accurate pI prediction can then be employed using currently available algorithms to very effectively filter data for peptide/protein identification, and thus lowering the false-positive rate for cross-correlation-based peptide identification algorithms. By simplifying the protein mixture problem to tryptic peptides, the effect of specific amino acids on pI prediction can be evaluated as a function of their position in the peptide chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号