首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a nonoscillatory half-linear second order differential equation (*) $$ (r(t)\Phi (x'))' + c(t)\Phi (x) = 0,\Phi (x) = \left| x \right|^{p - 2} x,p > 1, $$ and suppose that we know its solution h. Using this solution we construct a function d such that the equation (**) $$ (r(t)\Phi (x'))' + [c(t) + \lambda d(t)]\Phi (x) = 0 $$ is conditionally oscillatory. Then we study oscillations of the perturbed equation (**). The obtained (non)oscillation criteria extend existing results for perturbed half-linear Euler and Euler-Weber equations.  相似文献   

2.
In this paper, we prove the existence of solutions of a nonlocal boundary value problem for nonlinear integro-differential equations of fractional order given by $$ \begin{array}{ll} ^cD^qx(t) = f(t,x(t),(\phi x)(t),(\psi x)(t)), \quad 0 < t < 1,\\x(0) = \beta x(\eta), x'(0) =0, x''(0) =0, \ldots, x^{(m-2)}(0) =0, x(1)= \alpha x(\eta), \end{array}$$ where $${q \in (m-1, m], m \in \mathbb{N}, m \ge 2}$, $0< \eta <1$$ , and ${\phi x}$ and ${\psi x}$ are integral operators. The existence results are established by means of the contraction mapping principle and Krasnoselskii’s fixed point theorem. An illustrative example is also presented.  相似文献   

3.
In this paper, we study the third order ordinary differential equation: $$x'''(t) = f(t,x(t),x'(t),x''(t)), t \in (0,1)$$ subject to the boundary value conditions: $$x'(0) = x'(\xi ), x'(1) = \sum\limits_{i - 1}^{m - 3} {\beta _i x'(\eta _i )} , x''(1) = 0.$$ Hereβ i R, $\sum\limits_{i = 1}^{m - 3} {\beta _i = 1, 0< \eta _1< \eta _2< \ldots< \eta _{m - 3}< 1, 0< \xi< 1} $ . This is the case dimKerL=2. When theβ i have different signs, we prove some existence results for the m-point boundary value problem at resonance by use of the coincidence degree theory of Mawhin [12, 13]. Since all the existence results obtained in previous papers are for the case dimKerL=1, our work is new.  相似文献   

4.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

5.
Let R be a prime ring with center Z(R). For a fixed positive integer n, a permuting n-additive map ${\Delta : R^n \to R}$ is known to be permuting n-derivation if ${\Delta(x_1, x_2, \ldots, x_i x'_{i},\ldots, x_n) = \Delta(x_1, x_2, \ldots, x_i, \ldots, x_n)x'_i + x_i \Delta(x_1, x_2, \ldots, x'_i, \ldots, x_n)}$ holds for all ${x_i, x'_i \in R}$ . A mapping ${\delta : R \to R}$ defined by δ(x) = Δ(x, x, . . . ,x) for all ${x \in R}$ is said to be the trace of Δ. In the present paper, we have proved that a ring R is commutative if there exists a permuting n-additive map ${\Delta : R^n \to R}$ such that ${xy + \delta(xy) = yx + \delta(yx), xy- \delta(xy) = yx - \delta(yx), xy - yx = \delta(x) \pm \delta(y)}$ and ${xy + yx = \delta(x) \pm \delta(y)}$ holds for all ${x, y \in R}$ . Further, we have proved that if R is a prime ring with suitable torsion restriction then R is commutative if there exist non-zero permuting n-derivations Δ1 and Δ2 from ${R^n \to R}$ such that Δ1(δ 2(x), x, . . . ,x) =  0 for all ${x \in R,}$ where δ 2 is the trace of Δ2. Finally, it is shown that in a prime ring R of suitable torsion restriction, if ${\Delta_1, \Delta_2 : R^n \longrightarrow R}$ are non-zero permuting n-derivations with traces δ 1, δ 2, respectively, and ${B : R^n \longrightarrow R}$ is a permuting n-additive map with trace f such that δ 1 δ 2(x) =  f(x) holds for all ${x \in R}$ , then R is commutative.  相似文献   

6.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

7.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

8.
We study nonlinear boundary value problems of the form $$ [\Psi u']' + F(x;u',u) = g, u(0) = u(1) = 0 $$ , where Φ is a coercive continuous operator from L p to L q , and $$ F(x;u'',u',u) = g, u(0) = u(1) = 0 $$ ; first- and second-order partial differential equations $$ \Phi (x_1 ,x_2 ;u'_1 ,u'_2 ,u) = 0, \sum\limits_{i = 1}^\infty {[\Psi _i (u'_{x_i } )]'_{x_i } + F(x; \ldots ,u'_{x_i } , \ldots ,u) = g_i } $$ ; and general equations F(x; ..., u ii , ...., ...., u i , ...; u) = g(x) of elliptic type. We consider the corresponding boundary value problems of parabolic and hyperbolic type. The proof is based on various a priori estimates obtained in the paper and a nonlocal implicit function theorem.  相似文献   

9.
10.
пУсть жАДАНы Ужлы $$ - \infty< x_1< x_2< ...< x_k< x_{k + 1}< ...< x_n< + \infty ,$$ , И пУстьx 1 * <x 2 * <...<x n-1 * — кОРНИ МНОгО ЧлЕНА Ω′(х). гДЕ $$\omega (x) = \prod\limits_{k = 1}^n {(x - x_k ).} $$ В РАБОтЕ ИсслЕДУЕтсь жАДАЧА: кАк ОпРЕДЕлИт ь МНОгОЧлЕНР(х) МИНИМАльНОИ стЕп ЕНИ, Дль кОтОРОгО ВыпОлНь Утсь слЕДУУЩИЕ ИНтЕР пОльцИОННыЕ УслОВИь гДЕ {y k И {y k′}-жАДАННы Е сИстЕМы жНАЧЕНИИ.  相似文献   

11.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

12.
The problem of minimizing the functional (A) $${}_a\smallint ^b \varphi (x,y,y',y'')dx$$ under the conditions (B) $$y(a) = a_0 ,y'(a) = a_1 ,y(b) = b_0 ,y'(b) = b_1$$ is replaced by the problem of finding the vector (y1,y2,...,yn?1) on which the sum (C) $$\sum\limits_{\kappa = 0}^n {C_\kappa \varphi (x_\kappa ,y_\kappa ,\left. {\frac{{y_{\kappa + 1} - y_\kappa }}{h},\frac{{y_{\kappa + 1} - 2y_\kappa + y_{\kappa + 1} )}}{{h^2 }}} \right)}$$ takes a minimal value. Under certain conditions on ? andC k it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.  相似文献   

13.
This paper discusses the optimal periodic control problem to minimize the cost function $$J(u) = \int_0^1 {g(t,x(t),u(t))dt} $$ subject to the functional differential system $$dx(t)/dt = f(t,x_t ,u(t)),x_1 = x_0 $$ andu(·) εU ad. The maximum principle as a necessary condition of optimal control is proved under the assumption that Eq. (4) and its adjoint equation (5) both have no nontrivial periodic solution with period of 1. In this paper, the control domainU is an arbitrary set inR m.  相似文献   

14.
We are concerned with the global asymptotic stability of the equilibrium of the half-linear differential equation with a damped term $$\left(\phi_p(x')\right)' + h(t)\phi_p(x') + (p-1)\phi_p(x) = 0. $$ A necessary and sufficient growth condition on h(t) is obtained by using the generalized Prüfer transformation and the generalized Riccati transformation. Equivalent planar systems to the above-mentioned equation are also considered in the proof of our main result.  相似文献   

15.
В статье даны полные д оказательства следу ющих утверждений. Пустьω — непрерывная неубывающая полуадд итивная функций на [0, ∞),ω(0)=0 и пусть M?[0, 1] — матрица узл ов интерполирования. Если $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n > 0$$ то существует точкаx 0∈[0,1] и функцияf ∈ С[0,1] таки е, чтоω(f, δ)=О(ω(δ)), для которой $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x_0 ) - f(x_0 )| > 0$$ Если же $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n = \infty$$ , то существуют множес твоE второй категори и и функцияf ∈ С[0,1],ω(f, δ)=o(ω(δ)) та кие, что для всехxE $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x)| = \infty$$ . Исправлена погрешно сть, допущенная автор ом в [5], и отмеченная в работе П. Вертеши [9].  相似文献   

16.
In this paper, we investigate the existence of solutions of a fully nonlinear fourth-order differential equation $$x^{(4)}=f(t,x,x',x'',x'''),\quad t\in [0,1]$$ with one of the following sets of boundary value conditions; $$x'(0)=x(1)=a_{0}x''(0)-b_{0}x'''(0)=a_{1}x''(1)+b_{1}x'''(1)=0,$$ $$x(0)=x'(1)=a_{0}x''(0)-b_{0}x'''(0)=a_{1}x''(1)+b_{1}x'''(1)=0.$$ By using the Leray-Schauder degree theory, the existence of solutions for the above boundary value problems are obtained. Meanwhile, as an application of our results, an example is given.  相似文献   

17.
The discrete ergodic method (Yu. V. Linnik, Izv. Akad. Nauk SSSR, Ser. Mat.,4, 363–402 (1940); A. V. Malyshev, Tr. Mat. Inst. Akad. Nauk SSSR,65) is applied to the study of properties of integral points on the ellipsoids $$\sum\nolimits_{g,m} : g(x) = m,x = (x_1 ,x_2 ,x_3 ), g(x) = \bar f(Cx),$$ where \(\bar f\) is the adjoint of one of the 39 quadratic forms of Pall (Trans. Am. Math. Soc,59, 280–332 (1946);C is an integral matrix,¦detC¦?1. We construct a flow of integral points on the genus surface of the ellipsoidsg(x)=m. The ergodicity of this flow and a mixing theorem are proved. We obtain an asymptotic formula for the number of representations ofm belonging to a given domain on the ellipsoid and lying in a given residue class.  相似文献   

18.
The final step in the mathematical solution of many problems in mathematical physics and engineering is the solution of a linear, two-point boundary-value problem such as $$\begin{gathered} \ddot u - q(t)u = - g(t), 0< t< x \hfill \\ (0) = 0, \dot u(x) = 0 \hfill \\ \end{gathered} $$ Such problems frequently arise in a variational context. In terms of the Green's functionG, the solution is $$u(t) = \int_0^x {G(t, y, x)g(y) dy} $$ It is shown that the Green's function may be represented in the form $$G(t,y,x) = m(t,y) - \int_y^x {q(s)m(t, s) m(y, s)} ds, 0< t< y< x$$ wherem satisfies the Fredholm integral equation $$m(t,x) = k(t,x) - \int_0^x k (t,y) q(y) m(y, x) dy, 0< t< x$$ and the kernelk is $$k(t, y) = min(t, y)$$   相似文献   

19.
We study the analog of semi-separable integral kernels in \({\mathcal {H}}\) of the type $$ K(x, x') = \left\{\begin{array}{ll} F_1(x) G_1(x'), \quad& a < x' < x < b,\\ F_2 (x)G_2(x'), \quad& a < x < x' < b,\end{array}\right.$$ where \({-\infty \leqslant a < b \leqslant \infty}\) , and for a.e. \({x \in (a, b)}\) , \({F_j (x) \in \mathcal{B}_2(\mathcal{H}_j, \mathcal{H})}\) and \({G_j(x) \in \mathcal {B}_2(\mathcal {H},\mathcal {H}_j)}\) such that F j (·) and G j (·) are uniformly measurable, and $$\begin{array}{ll} || F_j ( \cdot) ||_{\mathcal {B}_2(\mathcal {H}_j,\mathcal {H})} \in L^2((a, b)), ||G_j (\cdot)||_{\mathcal {B}_2(\mathcal {H},\mathcal {H}_j)} \in L^2((a, b)), \quad j=1,2, \end{array}$$ with \({\mathcal {H}}\) and \({\mathcal {H}_j}\) , j = 1, 2, complex, separable Hilbert spaces. Assuming that K(·, ·) generates a trace class operator K in \({L^2((a, b);\mathcal {H})}\) , we derive the analog of the Jost–Pais reduction theory that succeeds in proving that the Fredholm determinant \({{\rm det}_{L^2((a,b);\mathcal{H})}}\) (I ? α K), \({\alpha \in \mathbb{C}}\) , naturally reduces to appropriate Fredholm determinants in the Hilbert spaces \({\mathcal{H}}\) (and \({\mathcal{H}_1 \oplus \mathcal{H}_2}\) ). Explicit applications of this reduction theory to Schrödinger operators with suitable bounded operator-valued potentials are made. In addition, we provide an alternative approach to a fundamental trace formula first established by Pushnitski which leads to a Fredholm index computation of a certain model operator.  相似文献   

20.
Let (?,〈,〉R) be a Riemannian manifold, x0, x1 ∈ ? and V: ?→? a locally Lipschitz continuous potential function. In this paper we look for the solutions x:[0, 1]→ →? of the differential inclusion (0.1) $$D_t \dot x(t) \in \partial V\left( {x(t)} \right)$$ with boundary conditions (0.2) $$x(0) = x_0 ,x(1) = x_1 $$ where Dtx(t) denotes the covariant derivative of x(t) along the direction of x(t) and ?V(x(t)) the generalized gradient of V in x(t). Using a variant of the Lusternik-Schnirelman critical point theory, we state the existence of infinitely many solutions of problem (0.1)-(0.2) when ? is not contractible in itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号