首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free solution electrophoretic mobility of an 118-base pair DNA fragment containing zero, three, six or nine cationic phosphoramidate internucleoside linkages has been measured by capillary electrophoresis. The electrophoretic mobility decreases with the increasing number of cationic phosphoramidate linkages, as expected because of the reduced negative charge on the DNA molecules. The decrease in mobility is approximately linear for DNA molecules containing three and six cationic phosphoramidate linkages, but begins to level off when nine cationic phosphoramidate linkages have been added. The mobility also varies somewhat depending on whether the modified phosphoramidate linkages are located at the 5'- or 3'-end of the DNA molecule.  相似文献   

2.
[reaction: see text] H-Phosphonate monomers of 2'-O-(2-methoxyethyl) ribonucleosides have been synthesized. Oxidation of oligonucleotide H-phosphonates has been optimized to allow the synthesis of oligonucleotides containing either 2'-deoxy or 2'-O-(2-methoxyethyl) ribonucleoside residues combined with three different phosphate modifications in the backbone, i.e., phosphodiester (PO), phosphorothioate (PS), and phosphoramidate (PN). Phosphodiester linkages were introduced by oxidation with a cocktail of 0.1 M Et(3)N in CCl(4)/Pyr/H(2)O (5:9:1) without affecting phosphorothioate or phosphoramidate linkages. For the synthesis of phosphoramidate-modified oligonucleotides, N(4)-acetyl deoxycytidine-3'-H-phosphonate monomers were used to avoid transamination during the oxidation step.  相似文献   

3.
Resorcarene derivatives, negatively charged even at moderate pH, were synthesized and employed as pseudostationary phases to achieve mobilities exceeding that of the electroosmotic flow. Under these conditions, a discontinuous electrolyte system was developed which allows the separation of four uncharged homologous 4-hydroxybenzoic esters (parabens) within a zone of resorcarene electrolyte, and the detection of these UV active compounds in a resorcarene-free zone, free from the high UV background absorbance of the resorcarenes. Resorcarenes, with differently charged functionalities (carboxylate and phosphate groups) to provide the electrophoretic mobility and with alkyl residues of different chain lengths responsible for the chromatographic interactions with the analytes, were tested and compared in terms of mobility and selectivity. Only the resorcarene phosphates exhibited sufficient mobilities at low pH exceeding the mobility of the electroosmotic flow (EOF). Retention factors of the parabens were found to increase with increasing chain length of the alkyl residues attached to the resorcarene. However, maximum selectivity was observed for an intermediate chain length (C8). An equation for the calculation of retention factors in discontinuous electrokinetic chromatography (EKC) is presented.  相似文献   

4.
A multi-variable computer model is presented for the prediction of the electrophoretic mobilities of peptides at pH 2.5 from known physico-chemical constants of their amino acid residues. The model is empirical and does not claim any theoretical dependencies; however, the results suggest that, at least at this pH, peptides may be theoretically represented as classical polymers of freely joined amino acid residues of unequal sizes. The model assumes that the electrophoretic mobility can be represented by a product of three functions that return the contributions of peptide charge, length and width, respectively to the mobility. The model relies on accurate experimental determination of the electrophoretic mobilities of a diverse set of peptides, by capillary zone electrophoresis (CZE), at 22 degrees C, with a 50 mM phosphate buffer, at pH 2.5. The electrophoretic mobilities of a basis set of 102 peptides that varied in charge from 0.65 to 16 and in size from two to 42 amino acid residues were accurately measured at these fixed experimental conditions using a stable 10% linear polyacrylamide-coated column. Data from this basis set was used to derive the peptide charge, length, and width functions respectively. The main purpose of this endeavor is to use the model for the prediction of peptide mobilities at pH 2.5, and for simulation of CZE peptide maps of protein digests. Excellent agreement was obtained between predicted and experimental electrophoretic mobilities for all categories of peptides, including the highly charged and the hydrophobic. To illustrate the utility of this model in protein studies it was used to simulate theoretical peptide maps of the digests of glucagon and horse cytochrome c. The resulting maps were compared and contrasted with their experimental counterparts. The potential of this approach and its limitations are discussed.  相似文献   

5.
《Electrophoresis》2018,39(12):1497-1503
Fully or partially charged oligosaccharide molecules play a key role in many areas of biology, where their fine structures are crucial in determining their functionality. However, the separation of specific charged oligosaccharides from similar moieties that typically coexist in extracted samples, even for those that are unbranched, and in cases where each saccharide moiety can only carry a single charge or not, is far from trivial. Typically such molecules are characterized by a degree of polymerization n and a number m (and distribution) of charged residues, and must be separated from a plethora of similar species possessing different combinations of n and m. Furthermore, the separation of the possible isomers of each species of fixed n and m is a formidable challenge to analytical chemists. Herein, we report the results of molecular dynamics simulations that have been performed in order to calculate the free solution electrophoretic mobilities of galacturonides and charged oligosaccharides derived from digests of the important plant cell‐wall polysaccharide pectin. The simulations are compared with an experiment and are found to correctly predict the loss of resolution of fully charged species above a critical degree of polymerization n and the ionic strength dependence of the electrophoretic mobilities of different partially charged oligosaccharides. It is expected that having a predictive tool for the calculation of the electrophoretic mobilities of differently charged oligosaccharide species in hand will allow experimental conditions that optimize the resolution of particular species to be ascertained and understood.  相似文献   

6.
Abstract

An effective method was suggested for the activation of phos-phomonoester groups in nicks of a double-strand DNA (1,2). This approach allows to incorporate various sugar phosphate backbone modifications at a particular site when DNA duplexes are being assembled. A modifying group is first introduced at the 5′- or 3′-termini of oligonucleotides, then a duplex is formed and oligomers are coupled on the complementary template using water-soluble l-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide or cyanogen bromide as the condensing agents. Various DNA duplexes containing not only natural phosphodiester but also phosphoramidate and pyrophospha-te internucleotide bonds, as well as phosphodiester bonds between nucleotide residues with modified sugar analogs (ribo-, arabino- and xylo-derivatives) were assembled by this method.  相似文献   

7.
The free solution mobility of DNA molecules of different molecular weights, the sequence dependence of the mobility, and the diffusion coefficients of small single- and double-stranded DNA (ss- and dsDNA) molecules can be measured accurately by capillary zone electrophoresis, using coated capillaries to minimize the electroosmotic flow (EOF) of the solvent. Very small differences in mobility between various analytes can be quantified if a mobility marker is used to correct for small differences in EOF between successive experiments. Using mobility markers, the molecular weight at which the free solution mobility of dsDNA becomes independent of molecular weight is found to be approximately 170 bp in 40 mM Tris-acetate-EDTA buffer. A DNA fragment containing 170 bp has a contour length of approximately 58 nm, close to the persistence length of DNA under these buffer conditions. Hence, the approach of the free solution mobility of DNA to a plateau value may be associated with the transition from a rod-like to a coil-like conformation in solution. Markers have also been used to determine that the free solution mobilities of ss- and dsDNA oligomers are sequence-dependent. Double-stranded 20-bp oligomers containing runs of three or more adenine residues in a row (A-tracts) migrate somewhat more slowly than 20-mers without A-tracts, suggesting that somewhat larger numbers of counterions are condensed in the ion atmospheres of A-tract DNAs, decreasing their net effective charge. Single-stranded 20-mers with symmetric sequences migrate approximately 1% faster than their double-stranded counterparts, and faster than single-stranded 20-mers containing A(5)- or T(5)-tracts. Interestingly, the average mobility of two complementary single-stranded 20-mers is equal to the mobility of the double-stranded oligomer formed upon annealing. Finally, the stopped migration method has been used to measure the diffusion coefficients of single- and double-stranded oligomers. The diffusion coefficients of ssDNA oligomers containing 20 nucleotides are approximately 50% larger than those of double-stranded DNA oligomers of the same size, reflecting the greater flexibility of ssDNA molecules. The methods used to carry out these experiments are also described in detail.  相似文献   

8.
The free solution mobilities of the adenosine nucleotides 5'-adenosine triphosphate (ATP), 5'-adenosine diphosphate (ADP), 5'-adenosine monophosphate (AMP), and 3'-5'-cyclic AMP (cAMP) have been measured in diethylmalonate buffers containing a wide variety of monovalent cations. The mobilities of all nucleotides increase gradually with the increase in intrinsic conductivity of the cation in the BGE. However, at a given conductivity, the mobilities observed for ATP, ADP, and AMP in BGEs containing alkali metal ions and other cations are lower than these observed in BGEs containing tetraalkylammonium ions. Since the mobility of cAMP is independent of the cation in the BGE, the results suggest that the relatively low mobilities observed for ATP, ADP, and AMP in BGEs containing cations other than a tetraalkylammonium ion are due to cation binding, reducing the effective net charge of the nucleotide and thereby reducing the observed mobility. To measure the binding quantitatively, the mobilities of the nucleotides were measured as a function of ionic strength. The mobilities of ATP, ADP, and AMP decrease nonlinearly with the square root of ionic strength (I(1/2)) in BGEs containing an alkali metal ion or Tris(+). By contrast, the mobilities decrease linearly with I(1/2) in BGEs containing a nonbinding quaternary ammonium ion, as expected from Debye-Hückel-Onsager (DHO) theory. The mobility of cAMP, a nonbinding analyte, decreases linearly with I(1/2), regardless of the cation in the BGE. Hence, a nonlinear decrease of the mobility of an analyte with I(1/2) appears to be a hallmark of counterion binding. The curved mobility profiles observed for ATP, ADP, and AMP in BGEs containing an alkali metal ion or Tris(+) were analyzed by nonlinear curve fitting, using difference mobility profiles to correct for the effect of the physical properties of BGE on the observed mobilities. The calculated apparent dissociation constants range from 22 to 344 mM, depending on the particular cation-nucleotide pair. Similar values have been obtained by other investigators, using different methods. Interestingly, Tris(+) and Li(+) bind to the adenosine nucleotides with approximately equal affinities, suggesting that positively charged Tris(+) buffer ions can compete with alkali metal ions in Tris-buffered solutions.  相似文献   

9.
The free solution mobilities of 26-base pair (bp) DNA oligomers containing A-tracts with and without internal ApT steps have been measured by capillary electrophoresis, using the mobility of a 26-bp random-sequence oligomer as a reference. The background electrolytes (BGEs) contained mixtures of Li+ and tetrapropylammonium (TPA+) ions, keeping the total cation concentration constant at 0.3 M. The mobility ratios equaled 1.00 in 0.3 M TPA+, indicating that the A-tract and reference oligomers had the same B-form conformation in this BGE. With increasing [Li+], the mobility ratio decreased as Li+ ions became localized in the A-tract minor groove, suggesting that the A-tract was now in the B* conformation. If the A-tract contained an internal ApT step and the oligomer contained less than ∼50% A + T, the mobility ratio reached a reduced plateau value that remained constant as the [Li+] increased to 0.3 M. However, for A-tracts without an internal ApT step and for A-tracts embedded in oligomers containing more than 50% A + T, the mobility ratios increased again at high [Li+], eventually reaching a plateau value of 1.00. Hence, DNA A-tracts in solution appear to exist as mixtures of the B and B* conformations, with the fractional concentration of each conformer depending on the [Li+], the A-tract sequence, and the total A + T content of the oligomer.  相似文献   

10.
5A沸石在水溶液中对氯化十四烷基吡啶的吸附   总被引:1,自引:0,他引:1  
表面活性剂在固液界面上的吸附作用是十分重要的课题,为此我们开展了这方面的研究[1-3]。沸石结构规则,孔大小均匀,具有特殊的吸附性质。近年来由于作为合成洗涤剂助剂的三聚磷酸钠可使水质富营养化,故国内外都在研究洗涤剂的低磷化措施。  相似文献   

11.
A discontinuous Tris-Cl/acetate (OAc) buffer system, unprecedently containing OAc as the trailing constituent, and operative in polyacrylamide gel electrophoresis (PAGE) at low polyacrylamide concentration (T = 4.8%) is described in the paper. The characteristics of the electrophoretic system are illustrated by the resolution of fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)-labeled malto-oligosaccharides and dextran homopolymers. In this buffer system, the resolving phase is constituted by Tris-OAc behind a moving boundary formed between the leading chloride ion of Tris-HCl gel buffer and the trailing OAc ion provided by a catholyte of NH(4)OAc. In contrast with the results obtained with Tris-CI/glycinate buffer commonly used in electrophoresis, or with Tris-CI/borate, the best resolution of the glucose oligomers containing 1-4 glucose units in Tris-OAc, pH 8.8, ionic strength of 0.08, was obtained at 4.8% polyacrylamide concentration, using 0.5 M NH(4)OAc, pH 9.5 as the catholyte. Under those conditions, the ANTS-glucose oligomers were separated with mobilities decreasing from glucose to maltohexaose. The linear Ferguson plots (log relative mobility, R(f), vs.%T) of the glucose oligomers show that the surface net charge of those oligomers is inversely related to their sizes, given by the slopes, K(R), of the plots. The molecular weight of the oligomers is directly but nonlinearly related to K(R). The novel electrophoretic system illustrated here for separation of short ANTS-saccharides can be potentially applied to the resolution of other biomolecules such as rapidly migrating DNA, peptides or proteins.  相似文献   

12.
Because self-assembly of matrix proteins is a key step in hard tissue mineralization, developing an understanding of the assembly pathways and underlying mechanisms is likely to be important for successful hard tissue engineering. While many studies of matrix protein assembly have been performed on bulk solutions, in vivo these proteins are likely to be in contact with charged biological surfaces composed of lipids, proteins, or minerals. Here we report the results of an in situ atomic force microscopy (AFM) study of self-assembly by amelogenin--the principal protein of the extracellular matrix in developing enamel--in contact with two different charged substrates: hydrophilic negatively charged bare mica and positively charged 3-aminopropyl triethoxysilane (APS) silanized mica. First we demonstrate an AFM-based protocol for determining the size of both amelogenin monomers and oligomers. Using this protocol, we find that, although amelogenin exists primarily as ~26 nm in diameter nanospheres in bulk solution at a pH of 8.0 studied by dynamic light scattering, it behaves dramatically differently upon interacting with charged substrates at the same pH and exhibits complex substrate-dependent assembly pathways and dynamics. On positively charged APS-treated mica surfaces, amelogenin forms a relatively uniform population of decameric oligomers, which then transform into two main populations: higher-order assemblies of oligomers and amelogenin monomers, while on negatively charged bare mica surfaces, it forms a film of monomers that exhibits tip-induced desorption and patterning. The present study represents a successful attempt to identify the size of amelogenin oligomers and to directly monitor assembly and disassembly dynamics on surfaces. The findings have implications for amelogenin-controlled calcium phosphate mineralization in vitro and may offer new insights into in vivo self-assembly of matrix proteins as well as their control over hard tissue formation.  相似文献   

13.
Cottet H  Gareil P 《Electrophoresis》2000,21(8):1493-1504
According to Stokes' treatment, the ionic mobility of particles, which are small with respect to Debye length, is usually considered to be proportional to the nominal charge and inversely proportional to the hydrodynamic radius. Experimentally, it is well known, however, that the ionic mobility of a small multicharged molecule does not depend linearly on its nominal charge in a wide range. This behavior can be accounted for by a condensation of the charge or a modification of the friction coefficient with the charge. This paper presents a semiempirical modeling of the actual mobility based on the assumption of additivity of frictional contributions pertaining to the uncharged molecular backbone and to each charged or uncharged moiety. Condensation of the charge was not considered. The model first appeared to be suitable for multicharged analytes having a characteristic dimension smaller than the Debye length, such as benzene polycarboxylic acids and polysulfated disaccharides. This approach was then adapted to account for the actual mobilities of singly and evenly charged oligomers (N-mers) having a dimension smaller than or similar to the Debye length. Rather good experimental agreement was obtained for polyalanines and polyglycines (N < or = 6), fatty acid homologs, fully sulfonated polystyrene oligomers (N < or = 13), and polycytidines (N < or = 10). Especially the influence of the polymerization degree on the mobility of oligomers having identical charge densities was clarified. It is also shown that the electrophoretic contribution to the overall friction coefficient increases linearly with the nominal charge but hardly depends on the chemical nature of the charged moieties. This model should be of interest to evaluate the role of various physicochemical phenomena (hydrodynamic and electrophoretic frictions, hydrodynamic coupling, charge condensation) involved in the migration of charged oligomers.  相似文献   

14.
5'-Nucleotides of A and U with the phosphate activated with 1-methyladenine generate RNA oligomers containing 40-50 monomers in 1 day in reactions catalyzed by montmorillonite. The corresponding monomers of C give oligomers that are 20-25-mers in length after a 9-day reaction. It was not possible to determine the chain lengths of the oligomers of G since they did not give well-defined bands on gel electrophoresis. Co-oligomers of A and U as well as A, U, G, and C were also prepared. The oligo(A)s formed were separated by gel electrophoresis, and the bands of the 7-39-mers were isolated, the 3',5'-phosphodiester bonds were cleaved by RNase T(2), and the terminal phosphate groups were cleaved with alkaline phosphatase. HPLC analysis revealed that the proportions of A(5)'pp(5)'A, A, A(2)'pA, and A(2)'pA(2)'pA formed were almost the same for the long and shorter oligomers. A similar structure analysis performed on the oligo(U)s established that the proportions of U(5)'pp(5)'U, U, U(2)'pU, U(2)'pU(2)'pU, U(2)'pU(2)'pU(2)'pU, and U(2)'pU(2)'pU(2)'pU(2)'pU did not vary with chain length. The structural analysis of the oligomers of A revealed that 74% of the phosphodiester bonds were 3',5'-linked a value slightly greater than 67% observed when imidazole was the activating group. 61% of the bonds in the U oligomers were 3',5'-linked, which is almost 3 times greater than the 20% measured when imidazole was the activating group. The potential significance of these data to the origin and early evolution of life is discussed.  相似文献   

15.
In this study, the migration behavior of charged and uncharged analytes was investigated under different conditions. Effective mobilities - electrophoretic mobilities under the influence of micelles - of cations, anions, and neutrals were measured at neutral, basic, and acidic pH (7.5, 11, and 2.2) using background electrolytes containing different sodium dodecyl sulfate (SDS) concentrations (0-90 mM) and acetonitrile (ACN) proportions (0-75%). SDS concentration and ACN proportion were found to have a tremendous effect on the effective mobilities and migration order of the model compounds. Although the SDS micelles preferably interact with neutrals and cations, hydrophobic bonds can also occur with anions. Cations, anions, and neutrals having rather different migration behaviors, it is possible to considerably enhance the selectivity of the method by adjusting properly the SDS concentration and the ACN proportion. These observations confirm the interest of using micellar electrokinetic chromatography not only for the separation of neutral substances but also to analyze charged compounds.  相似文献   

16.
GENTRANS, a comprehensive one-dimensional dynamic simulator for electrophoretic separations and transport, was extended for handling electrokinetic chiral separations with a neutral ligand. The code can be employed to study the 1:1 interaction of monovalent weak and strong acids and bases with a single monovalent weak or strong acid or base additive, including a neutral cyclodextrin, under real experimental conditions. It is a tool to investigate the dynamics of chiral separations and to provide insight into the buffer systems used in chiral capillary zone electrophoresis (CZE) and chiral isotachophoresis. Analyte stacking across conductivity and buffer additive gradients, changes of additive concentration, buffer component concentration, pH, and conductivity across migrating sample zones and peaks, and the formation and migration of system peaks can thereby be investigated in a hitherto inaccessible way. For model systems with charged weak bases and neutral modified β-cyclodextrins at acidic pH, for which complexation constants, ionic mobilities, and mobilities of selector-analyte complexes have been determined by CZE, simulated and experimentally determined electropherograms and isotachopherograms are shown to be in good agreement. Simulation data reveal that CZE separations of cationic enantiomers performed in phosphate buffers at low pH occur behind a fast cationic migrating system peak that has a small impact on the buffer composition under which enantiomeric separation takes place.  相似文献   

17.
The electrophoretic mobilities of three beta-blocker drugs, practolol, timolol and propranolol, have been measured in electrolyte systems with mixed binary and ternary water-methanol-ethanol solvents with acetic acid/sodium acetate as buffer using capillary electrophoresis. The highest mobilities for the analytes studied have been observed in pure aqueous, the lowest values in ethanolic buffers. The measured electrophoretic mobilities have been used to evaluate the accuracy of a mathematical model based on a mixture response surface method that expresses the mobility as a function of the solvent composition. Mean percentage error (MPE) has been computed considering experimental and calculated mobilities as an accuracy criterion. The obtained MPE for practolol, timolol and propranolol in the binary mixtures are between 0.9 and 2.6%, in the ternary water-methanol-ethanol solvent system the MPE was about 2.7%. The MPE values resulting from the proposed equation lie within the experimental relative standard deviation values and can be considered as an acceptable error.  相似文献   

18.
The effect of phosphate group modifications on formation and properties of G‐quadruplexes (G4s) has not been investigated in detail. Here, we evaluated the structural, thermodynamic and kinetic properties of the parallel G‐quadruplexes formed by oligodeoxynucleotides d(G4T), d(TG4T) and d(TG5T), in which all phosphates were replaced with N‐methanesulfonyl (mesyl) phosphoramidate or phosphoryl guanidine groups resulting in either negatively charged or neutral DNA sequences, respectively. We established that all modified sequences were able to form G‐quadruplexes of parallel topology; however, the presence of modifications led to a decrease in thermal stability relative to unmodified G4s. In contrast to negatively charged G4s, assembly of neutral G4 DNA species was faster in the presence of sodium ions than potassium ions, and was independent of the salt concentration used. Formation of mixed G4s composed of both native and neutral G‐rich strands has been detected using native gel electrophoresis, size‐exclusion chromatography and ESI‐MS. In summary, our results indicate that the phosphate modifications studied are compatible with G‐quadruplex formation, which could be used for the design of biologically active compounds.  相似文献   

19.
The use of capillary electrochromatography (CEC) for the separation by isocratic elution of synthetic peptides, proteins as well as the tryptic digest of cytochrome c has been demonstrated. The monolithic porous stationary phase was prepared from silanized fused-silica capillaries of 75 microm I.D. by in situ copolymerization of vinylbenzyl chloride and ethylene glycol dimethacrylate in the presence of propanol and formamide as the porogens. The chloromethyl groups at the surface of the porous monolith were reacted with N,N-dimethylbutylamine to form a positively charged chromatographic surface with fixed n-butyl chains. Results of studies on the influence of temperature and mobile phase composition on the retention and selectivity of separation by CEC demonstrated the feasibility of rapid polypeptide analysis and tryptic mapping at elevated temperature with high resolution and efficiency. Typically the chromatography of a tryptic digest of cytochrome c took about 5 min at 55 degrees C and 75 kV/m with hydro-organic mobile phases containing acetonitrile in 50 mM phosphate buffer, pH 2.5. For peptides and proteins plots of logarithmic k'cec against acetonitrile concentration were nonlinear, whereas Arrhenius plots for the mobilities were nearly linear. Comparison of the separation of such samples under conditions of CEC and capillary zone electrophoresis (CZE) indicates that the mechanism of separation in CEC is unique and leads to a chromatographic profile different from that obtained by CZE.  相似文献   

20.
Previously we introduced the positively charged pyrrolidine-amide oligonucleotide mimics (POM), which possess a pyrrolidine ring and amide linkage in place of the sugar-phosphodiester backbone of natural nucleic acids. Short POM homo-oligomers have shown promising DNA and RNA recognition properties. However, to better understand the properties of POM and to assess their potential for use as modulators of gene expression and bioanalytical or diagnostic tools, more biologically relevant, longer, mixed-sequence oligomers need to be studied. In light of this, several mixed-sequence POM oligomers were synthesised, along with fluorescently labelled POM oligomers and a POM-peptide conjugate. UV thermal denaturation showed that mixed-sequence POMs hybridise to DNA and RNA with high affinity but slow rates of association and dissociation. The sequence specificity, influence of terminal amino acids, and the effect of pH and ionic strength on the DNA and RNA hybridisation properties of POM were extensively investigated. In addition, isothermal titration calorimetry (ITC) was used to investigate the thermodynamic parameters of the binding of a POM-peptide conjugate to DNA. Cellular uptake experiments have also shown that a fluorescently labelled POM oligomer is taken up into HeLa cells. These findings demonstrate that POM has the potential for use in a variety of applications, alongside other modified nucleic acids developed to date, such as peptide nucleic acids (PNA) and phosphoramidate morpholino oligomers (PMO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号