首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Oxidative Lime Pretreatment of Alamo Switchgrass   总被引:1,自引:0,他引:1  
Previous studies have shown that oxidative lime pretreatment is an effective delignification method that improves the enzymatic digestibility of many biomass feedstocks. The purpose of this work is to determine the recommended oxidative lime pretreatment conditions (reaction temperature, time, pressure, and lime loading) for Alamo switchgrass (Panicum virgatum). Enzymatic hydrolysis of glucan and xylan was used to determine the performance of the 52 studied pretreatment conditions. The recommended condition (110°C, 6.89 bar O2, 240 min, 0.248 g Ca(OH)2/g biomass) achieved glucan and xylan overall yields (grams of sugar hydrolyzed/100 g sugar in raw biomass, 15 filter paper units (FPU)/g raw glucan) of 85.9 and 52.2, respectively. In addition, some glucan oligomers (2.6 g glucan recovered/100 g glucan in raw biomass) and significant levels of xylan oligomers (26.0 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor. Combining a decrystallization technique (ball milling) with oxidative lime pretreatment further improved the overall glucan yield to 90.0 (7 FPU/g raw glucan).  相似文献   

2.
Lime pretreatment of crop residues bagasse and wheat straw   总被引:9,自引:0,他引:9  
Lime (calcium hydroxide) was used as a pretreatment agent to enhance the enzymatic digestibility of two common crop residues: bagasse and wheat straw. A systematic study of pretreatment conditions suggested that for short pretreatment times (1–3 h), high temperatures (85-135°C) were required to achieve high sugar yields, whereas for long pretreatment times (e.g., 24 h), low temperatures (50–65°C) were effective. The recommended lime loading is 0.1 g Ca(OH)2/g dry biomass. Water loading had little effect on the digestibility. Under the recommended conditions, the 3-d reducing sugar yield of the pretreated bagasse increased from 153 to 659 mg Eq glucose/g dry biomass, and that of the pretreated wheat straw increased from 65 to 650 mg Eq glucose/g dry biomass. A material balance study on bagasse showed that the biomass yield after lime pretreatment is 93.6%. No glucan or xylan was removed from bagasse by the pretreatment, whereas 14% of lignin became solubilized. A lime recovery study showed that 86% of added calcium was removed from the pretreated bagasse by ten washings and could be recovered by carbonating the wash water with CO2 at pH 9.5.  相似文献   

3.
The objective of this work was to determine the optimum conditions of sugarcane bagasse pretreatment with lime to increase the enzymatic hydrolysis of the polysaccharide component and to study the delignification kinetics. The first stage was an evaluation of the influence of temperature, reaction time, and lime concentration in the pretreatment performance measured as glucose release after hydrolysis using a 23 central composite design and response surface methodology. The maximum glucose yield was 228.45 mg/g raw biomass, corresponding to 409.9 mg/g raw biomass of total reducing sugars, with the pretreatment performed at 90°C, for 90 h, and with a lime loading of 0.4 g/g dry biomass. The enzymes loading was 5.0 FPU/dry pretreated biomass of cellulase and 1.0 CBU/dry pretreated biomass of β-glucosidase. Kinetic data of the pretreatment were evaluated at different temperatures (60°C, 70°C, 80°C, and 90°C), and a kinetic model for bagasse delignification with lime as a function of temperature was determined. Bagasse composition (cellulose, hemicellulose, and lignin) was measured, and the study has shown that 50% of the original material was solubilized, lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (60–90°C). The delignification was highly dependent on temperature and duration of pretreatment.  相似文献   

4.
Lime Pretreatment of Sugarcane Bagasse for Bioethanol Production   总被引:2,自引:0,他引:2  
The pretreatment of sugarcane bagasse with lime (calcium hydroxide) is evaluated. The effect of lime pretreatment on digestibility was studied through analyses using central composite design (response surface), considering pretreatment time, temperature, and lime loading as factors. The responses evaluated were the yield of glucose from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/sugar factory (non-screened bagasse) and bagasse in the size range from 0.248 to 1.397 mm (screened bagasse) (12-60 mesh). It was observed that the particle size presented influence in the release of fermentable sugars after enzymatic hydrolysis using low loading of cellulase and β-glucosidase (3.5 FPU/g dry pretreated biomass and 1.0 IU/g dry pretreated biomass, respectively).  相似文献   

5.
Oxidative lime pretreatment increases the enzymatic digestibility of lignocellulosic biomass primarily by removing lignin. In this study, recommended pretreatment conditions (reaction temperature, oxygen pressure, lime loading, and time) were determined for Dacotah switchgrass. Glucan and xylan overall hydrolysis yields (72 h, 15 FPU/g raw glucan) were measured for 105 different reaction conditions involving three different reactor configurations (very short term, short term, and long term). The short-term reactor was the most productive. At the recommended pretreatment condition (120 °C, 6.89 bar O2, 240 min), it achieved an overall glucan hydrolysis yield of 85.2 g glucan hydrolyzed/100 g raw glucan and an overall xylan yield of 50.1 g xylan hydrolyzed/100 g raw xylan. At this condition, glucan oligomers (1.80 g glucan recovered/100 g glucan in raw biomass) and xylan oligomers (25.20 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor, which compensate for low pretreatment yields.  相似文献   

6.
Sugar cane bagasse consists of hemicellulose (24%) and cellulose (38%), and bioconversion of both fractions to ethanol should be considered for a viable process. We have evaluated the hydrolysis of pretreated bagasse with combinations of cellulase, β-glucosidase, and hemicellulase. Ground bagasse was pretreated either by the AFEX process (2NH3: 1 biomass, 100 °C, 30 min) or with NH4OH (0.5 g NH4OH of a 28% [v/v] per gram dry biomass; 160 °C, 60 min), and composition analysis showed that the glucan and xylan fractions remained largely intact. The enzyme activities of four commercial xylanase preparations and supernatants of four laboratory-grown fungi were determined and evaluated for their ability to boost xylan hydrolysis when added to cellulase and β-glucosidase (10 filter paper units [FPU]: 20 cellobiase units [CBU]/g glucan). At 1% glucan loading, the commercial enzyme preparations (added at 10% or 50% levels of total protein in the enzyme preparations) boosted xylan and glucan hydrolysis in both pretreated bagasse samples. Xylanase addition at 10% protein level also improved hydrolysis of xylan and glucan fractions up to 10% glucan loading (28% solids loading). Significant xylanase activity in enzyme cocktails appears to be required for improving hydrolysis of both glucan and xylan fractions of ammonia pretreated sugar cane bagasse.  相似文献   

7.
Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 g?lime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kg?lignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kg?ethanol/ton raw bagasse.  相似文献   

8.
Simultaneous saccharification and cofermentation (SSCF) was carried out at approximately 15% total solids using conditioned dilute-acid pretreated yellow poplar feedstock, an adapted variant of National Renewable Energy Laboratory (NREL) xylose-fermenting Zymomonas mobilis and either commercial or NREL-produced cellulase enzyme preparations. In 7 d, at a cellulase loading of 12 filter paper units pergram cellulose (FPU/g), the integrated system produced more than 3% w/v ethanol and achieved 54% conversion of all potentially available biomass sugars (total sugars) entering SSCF. A control SSCF employing Sigmacell cellulose and a commercial cellulase at an enzyme loading of 14 FPU/gachieved 65% conversion of total sugars to ethanol.  相似文献   

9.
In this study, we present a powerful stirred tank reactor system that can efficiently hydrolyse lignocellulosic material at high solid content to produce hydrolysates with glucose concentration > 100 g/kg. As lignocellulosic substrates alkaline-pretreated wheat straw and organosolv-pretreated beech wood were used. The developed vertical reactor was equipped with a segmented helical stirrer, which was specially designed for high biomass hydrolysis. The stirrer was characterised according to mixing behaviour and power input. To minimise the cellulase dosage, a response surface plan was used. With the empirical relationship between glucose yield, cellulase loading and solid content, the minimal cellulase dosage was calculated to reach at least 70 % yield at high glucose and high substrate concentrations within 48 h. The optimisation resulted in a minimal enzyme dosage of 30 FPU/g dry matter (DM) for the hydrolysis of wheat straw and 20 FPU/g DM for the hydrolysis of beech wood. By transferring the hydrolysis reaction from shaking flasks to the stirred tank reactor, the glucose yields could be increased. Using the developed stirred tank reactor system, alkaline-pretreated wheat straw could be converted to 110 g/kg glucose (76 %) at a solid content of 20 % (w/w) after 48 h. Organosolv-pretreated beech wood could be efficiently hydrolysed even at 30 % (w/w) DM, giving 150 g/kg glucose (72 %).  相似文献   

10.
Plant materials from the vegetative growth stage of reed canarygrass and the seed stage of reed canarygrass are pretreated by ammonia fiber expansion (AFEX) and enzymatically hydrolyzed using 15 filter paper units (FPU) cellulase/g glucan to evaluate glucose and xylose yields. Percent conversions of glucose and xylose, effects of temperature and ammonia loading, and hydrolysis profiles are analyzed to determine the most effective AFEX treatment condition for each of the selected materials. The controls used in this study were untreated samples of each biomass material. All pretreatment conditions tested enhanced enzyme digestibility and improved sugar conversions for reed canarygrass compared with their untreated counterparts. Based on 168 h hydrolysis results using 15 FPU Spezyme CP cellulase/g glucan the most effective AFEX treatment conditions were determined as: vegetative growth stage of reed canarygrass--100 degrees C, 60% moisture content, 1.2:1 kg ammonia/kg of dry matter (86% glucose and 78% xylose) and seed stage of reed canarygrass--100 degrees C, 60% moisture content, 0.8:1 kg ammonia/kg of dry matter (89% glucose and 81% xylose). Supplementation by commercial Multifect 720 xylanase along with cellulase further increased both glucose and xylose yields by 10-12% at the most effective AFEX conditions.  相似文献   

11.
Ammonia fiber explosion treatment of corn stover   总被引:1,自引:0,他引:1  
Optimizing process conditions and parameters such as ammonia loading, moisture content of biomass, temperature, and residence time is necessary for maximum effectiveness of the ammonia fiber explosion process. Approximate optimal pretreatment conditions for corn stover were found to be temperature of 90°C, ammonia: dry corn stover mass ratio of 1∶1, moisture content of corn stover of 60% (dry weight basis), and residence time (holding at target temperature), of 5 min. Approximately 98% of the theoretical glucose yield was obtained during enzymatic hydrolysis of the optimal treated corn stover using 60 filter paper units (FPU) of cellulase enzyme/g of glucan (equal to 22 FPU/g of dry corn stover). The ethanol yield from this sample was increased up to 2.2 times over that of untreated sample. Lowering enzyme loading to 15 and 7.5 FPU/g of glucan did not significantly affect the glucose yield compared with 60 FPU, and any differences between effects at different enzyme levels decreased as the treatment temperature increased.  相似文献   

12.
Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60g/L of corn stover, 195°C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50°C using 25 filter paper units (FPU)/g of dry matter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40°C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.  相似文献   

13.
Bioconversion of lignocellulose to biofuels suffers from the degradation compounds formed during pretreatment and acid hydrolysis. In order to achieve an efficient biomass to biofuel conversion, detoxification is often required before enzymatic hydrolysis and microbial fermentation. Prehydrolysates from ethanol organosolv-pretreated pine wood were used as substrates in butanol fermentation in this study. Six detoxification approaches were studied and compared, including overliming, anion exchange resin, nonionic resin, laccase, activated carbon, and cysteine. It was observed that detoxification by anion exchange resin was the most effective method. The final butanol yield after anion exchange resin treatment was comparable to the control group, but the fermentation was delayed for 72 h. The addition of Ca(OH)2 was found to alleviate this delay and improve the fermentation efficiency. The combination of Ca(OH)2 and anion exchange resin resulted in completion of fermentation within 72 h and acetone–butanol–ethanol (ABE) production of 11.11 g/L, corresponding to a yield of 0.21 g/g sugar. The cysteine detoxification also resulted in good detoxification performance, but promoted fermentation towards acid production (8.90 g/L). The effect of salt on ABE fermentation was assessed and the possible role of Ca(OH)2 was to remove the salts in the prehydrolysates by precipitation.  相似文献   

14.
Ethanol can be produced from lignocellulosic biomass with the usage of ball milling pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields from lignocellulosic feed stocks are critical parameters for ethanol production process. The research results from this paper indicated that the yields of glucose and xylose were improved by adding any of the following dilute chemical reagents: H2SO4, HCl, HNO3, CH3COOH, HCOOH, H3PO4, and NaOH, KOH, Ca(OH)2, NH3·H2O in the ball milling pretreatment of corn stover. The optimal enzymatic hydrolysis efficiencies were obtained under the conditions of ball milling in the alkali medium that was due to delignification. The data also demonstrated that ball milling pretreatment was a robust process. From the microscope image of ball milling-pretreated corn stover, it could be observed that the particle size of material was decreased and the fiber structure was more loosely organized. Meanwhile, the results indicate that the treatment effect of wet milling is better than that of dry milling. The optimum parameters for the milling process were ball speed of 350 r/min, solid/liquid ratio of 1:10, raw material particle size with 0.5 mm, and number of balls of 20 (steel ball, Φ = 10 mm), grinding for 30 min. In comparison with water milling process, alkaline milling treatment could increase the enzymatic hydrolysis efficiency of corn stover by 110%; and through the digestion process with the combination of xylanase and cellulase mixture, the hydrolysis efficiency could increase by 160%.  相似文献   

15.
A new pretreatment technology using dilute ammonium hydroxide was evaluated for ethanol production on sorghum. Sorghum fibers, ammonia, and water at a ratio of 1:0.14:8 were heated to 160 °C and held for 1 h under 140–160 psi pressure. Approximately, 44% lignin and 35% hemicellulose were removed during the process. Hydrolysis of untreated and dilute ammonia pretreated fibers was carried out at 10% dry solids at an enzyme concentration of 60 FPU Spezyme CP and 64 CBU Novozyme 188/g glucan. Cellulose digestibility was higher (84%) for ammonia pretreated sorghum as compared to untreated sorghum (38%). Fermentations with Saccharomyces cerevisiae D5A resulted in 24 g ethanol /100 g dry biomass for dilute ammonia pretreated sorghum and 9 g ethanol /100 g dry biomass for untreated sorghum.  相似文献   

16.
Experimental results are presented for continuous conversion of pretreated hardwood flour to ethanol. A simultaneous saccharification and fermentation (SSF) system comprised ofTrichoderma reesei cellulase supplemented with additional β-glucosidase and fermentation bySaccharomyces cerevisiae was used for most experiments, with data also presented for a direct microbial conversion (DMC) system comprised ofClostridium thermocellum. Using a batch SSF system, dilute acid pretreatment of mixed hardwood at short residence time(10 s, 220°C, 1% H2SO4) was compared to poplar wood pretreated at longer residence time (20 min, 160°C, 0.45% H2SO4). The short residence time pretreatment resulted in a somewhat (10–20%) more reactive substrate, with the reactivity difference particularly notable at low enzyme loadings and/or low agitation. Based on a preliminary screening, inhibition of SSF by byproducts of short residence time pretreatment was measurable, but minor. Both SSF and DMC were carried out successfully in well-mixed continuous systems, with steady-state data obtained at residence times of 0.58–3 d for SSF as well as 0.5 and 0.75 d for DMC. The SSF system achieved substrate conversions varying from 31% at a 0.58-d residence time to 86% at a 2-d residence time. At comparable substrate concentrations (4–5 g/l) and residence times (0.5–0.58 d), substrate conversion in the DMC system (77%) was significantly higher than that in the SSF system (31%). Our results suggest that the substrate conversion in SSF carried out in CSTR is relatively insensitive to enzyme loading in the range 7–25 U/g cellulose and to substrate concentration in the range of 5–60 g/L cellulose in the feed.  相似文献   

17.
The biorefinery process for sugarcane bagasse saccharification generally requires significant accessibility of cellulose. We reported a novel method of cascade cellulase enzymatic hydrolysis coupling with ultrafine grinding pretreatment for sugarcane bagasse saccharification. Three enzymatic hydrolysis modes including single cellulase enzymatic hydrolysis, mixed cellulase enzymatic hydrolysis, and cascade cellulase enzymatic hydrolysis were compared. The changes on the functional group and surface morphology of bagasse during cascade cellulase enzymatic hydrolysis were also examined by FT-IR and SEM respectively. The results showed that cascade enzymatic hydrolysis was the most efficient way to enhance the sugarcane bagasse sacchari cation. More than 65% of reducing sugar yield with 90.1% of glucose selectivity was achieved at 50 oC, pH=4.8 for 72 h (1200 r/min) with cellulase I of 7.5 FPU/g substrate and cellulase II of 5 FPU/g substrate.  相似文献   

18.
Forest biomass is a promising resource for future biofuels and bioproducts. Pre-pulping extraction of hemicellulose by alkaline (Green Liquor) pretreatment produces a neutral-pH extract containing hemicellulose-derived oligomers. A near-term option for use of this extract is to hydrolyze the oligomers to fermentable monomer sugars. Chips of mixed northern hardwoods were cooked in a rocking digester at 160 °C for 110 min in Green Liquor at a concentration of 3% Na2O equivalent salts on dry wood. The mass of wood extracted into the Green Liquor extract was approximately 11.4% of the debarked wood mass, which resulted in a dilute solution of oligomeric hemicelluloses sugars. The concentration of the extract was increased through partial evaporation prior to hydrolysis. Dilute sulfuric acid hydrolysis was applied at conditions ranging from 100 to 160 °C, 2% to 6% (w/v) H2SO4, and 2- to 258-min residence time. The maximum fermentable sugar concentration achieved from evaporated extract was 10.7 g/L, representing 90.7% of the maximum possible yield. Application of the biomass pretreatment severity function to the hydrolysis results proved to offer a relatively poor prediction of temperature and reaction time interaction. The combined severity function, which incorporates reaction time, temperature, and acid concentration, did prove to provide a useful means of trading off the combined effects of these three variables on total sugar yields.  相似文献   

19.
Pretreatment has been regarded as the most efficient strategy for conversion of lignocellulosic biomass to fermentable sugars. In this work, sulfolane pretreatment was performed to break the intricate structure of shrub willow for inhabitation of the enzymatic accessibility to holocellulose. The effects of varying pretreatment parameters on enzymatic hydrolysis of shrub willow were investigated. It was found that sulfolane was more compatible with lignin instead of carbohydrate, and the loss of carbohydrate could be attributed to water and acid generated from sulfolane. The optimum conditions leading to maximal sugar recovery from enzymatic saccharification were confirmed. After pretreatment of shrub willow powder in sulfolane at 170 °C for 1.5 h with mass ratio of sulfolane to substrate of 5, the sugar release could reach 555 mg/g raw materials (352 mg glucose, 203 mg xylose) when combining 20 FPU cellulase, 20 CBU β-glucosidase, and 1.5 FXU xylanase, representing 78.2 % of glucose and 56.6 % of xylose in shrub willow. This enhanced enzymatic saccharification was due to delignification and removal of a proportion of hemicelluloses, as confirmed by X-ray diffraction analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, gas chromatography, and ionic chromatography. Thus, these studies prove sulfolane pretreatment to be an effective and promising approach for biomass to biofuel processing.  相似文献   

20.
The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9?% E. crassipes (w/w), 8.9?% raw corn cob (w/w), 3.5?% raw rice straw (w/w), 10.7?% raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96?h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80?U/g the dry weight of substrates after incubation for 144?h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号