首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lime pretreatment of crop residues bagasse and wheat straw   总被引:9,自引:0,他引:9  
Lime (calcium hydroxide) was used as a pretreatment agent to enhance the enzymatic digestibility of two common crop residues: bagasse and wheat straw. A systematic study of pretreatment conditions suggested that for short pretreatment times (1–3 h), high temperatures (85-135°C) were required to achieve high sugar yields, whereas for long pretreatment times (e.g., 24 h), low temperatures (50–65°C) were effective. The recommended lime loading is 0.1 g Ca(OH)2/g dry biomass. Water loading had little effect on the digestibility. Under the recommended conditions, the 3-d reducing sugar yield of the pretreated bagasse increased from 153 to 659 mg Eq glucose/g dry biomass, and that of the pretreated wheat straw increased from 65 to 650 mg Eq glucose/g dry biomass. A material balance study on bagasse showed that the biomass yield after lime pretreatment is 93.6%. No glucan or xylan was removed from bagasse by the pretreatment, whereas 14% of lignin became solubilized. A lime recovery study showed that 86% of added calcium was removed from the pretreated bagasse by ten washings and could be recovered by carbonating the wash water with CO2 at pH 9.5.  相似文献   

2.
Typical pretreatment requires high-energy (steam and electricity) and corrosion-resistant, high-pressure reactors. A review of the literature suggests that fungal pretreatment could potentially lower the severity requirements of acid, temperature and time. These reductions in severity are also expected to result in less biomass degradation and consequently lower inhibitor concentrations compared to conventional thermochemical pretreatment. Furthermore, potential advantages of fungal pretreatment of agricultural residues, such as corn stover, are suggested by its effectiveness in improving the cellulose digestibility of many types of forage fiber and agricultural wastes. Our preliminary tests show a three- to five-fold improvement in enzymatic cellulose digestibility of corn stover after pretreatment with Cyathus stercoreus; and a ten- to 100-fold reduction in shear force needed to obtain the same shear rate of 3.2 to 7 rev/s, respectively, after pretreatment with Phanerochaete chrysosporium.  相似文献   

3.
Fundamental factors affecting biomass enzymatic reactivity   总被引:19,自引:0,他引:19  
Poplar wood was treated with peracetic acid, KOH, and ball milling to produce 147 modellignocelluloses with a broad spectrum of lignin contents, acetyl contents, and crystallinity indices (CrIs), respectively. An empirical model was identified that describes the roles of these three properties in enzymatic hydrolysis. Lignin content and CrI have the greatest impact on biomass digestibility, whereas acetyl content has a minor impact. The digestibility of several lime-treated biomass samples agreed with the empirical model. Lime treatment removesallacetyl groups and a moderate amount of lignin and increases CrIslightly; lignin removal is the dominant benefit from lime treatment.  相似文献   

4.
Five different chemical pretreatments, using dilute sulfuric acid, sodium hydroxide, hydrogen peroxide and sodium hydroxide, peroxymonosulfate, and acetic acid, were applied to aspen thermomechanical fibers. The pretreated fibers were submitted to enzymatic hydrolysis and the liberated glucose was monitored. High glucose concentrations were observed for the peroxymonosulfate and the acetic acid pretreated samples. Glucose concentrations greater than 25 g/L were obtained in these cases. This corresponds to conversions on the order of 90% of the pretreated substrate glucose content.  相似文献   

5.
Some regularities of abies-wood oxidative delignification by acetic acid–hydrogen peroxide mixture under the action of suspended TiO2 catalyst and UV pretreatment of wood pulp were studied. The combined action of TiO2 catalyst and of UV-pretreatment of abies-wood allow to produce at optimal conditions of the delignification process the chemically pure cellulose containing no residual lignin. The major characteristics of cellulose product obtained from abies-wood correspond to the characteristics of microcrystalline cellulose.  相似文献   

6.
酸预处理对生物质热裂解规律影响的实验研究   总被引:2,自引:0,他引:2  
在自制的热裂解机理实验台上进行了不同酸处理对稻壳以及白松的热裂解影响实验研究。经过盐酸浸泡后,稻壳中的金属离子含量明显降低;经盐酸洗涤后的稻壳热裂解焦油产量升高,由原始物料时的41.74%增加到7%盐酸洗涤后的52.88%,而气体和焦炭产量相应降低,并且随着盐酸浓度的增加,对应的趋势更加明显。酸洗涤后稻壳热裂解气体产物主要由CO和CO2组成,其产量相比原样都有所降低;不同种类的酸对生物质热裂解规律的影响存在差异,盐酸因其去离子效果最好而对生物质热裂解产物分布影响最强;对白松原样以及酸洗后白松的微观结构进行了电镜分析,结果发现,硫酸对白松的微观结构产生了明显的影响。  相似文献   

7.
Good enzymatic hydrolysis of steam-exploded Douglas fir wood (SEDW) cannot be achieved owing to the very high lignin content (>40%) that remains associated with this substrate. Thus, in this study, we investigated the use of alkali-oxygen treatment as a posttreatment to delignify SEDW and also considered the enzymatic hydrolyzability of the delignified SEDW. The results showed that under optimized conditions of 15% NaOH, 5% consistency, 110°C, and 3h, approx84% of the lignin in SEDW could be removed. The resulting delignified SEDW had good hydrolyzability, and cellulose-to-glucose conversion yields of over 90 and 100% could be achieved within 48 h with 20 and 40 filter paper units/g of cellulose enzyme loadings, respectively. It was also indicated that severe conditions, such as high NaOH concentration and high temperature, should not be utilized in oxygen delignification of SEDW in order to avoid extensive condensation of lignin and significant degradation of cellulose.  相似文献   

8.
The effect of surfactant on enzymatic digestibility was investigated during the pretreatment stage. Newspaper was pretreated with an ammonia-hydrogen peroxide mixture on a shaking bath at 40°C and 130 strokes/min for 3 h. Two kinds of nonionic surfactants, NP series and Tween series, were utilized. The effect of hydrophile-lipophile balance (HLB) value of both series surfactants on digestibility was found to be negligible, even though de-inking efficiency was improved as HLB value was increased. The effect of surfactant loading on digestibility was small, below 0.5 wt%, and negligible above 0.5 wt% at 60 international filter paper units (IFPU). The percentage improvement in digestibility increased as enzyme loading decreased. Digestibility of NP-5-added sample relative to control sample, increased significantly at an enzyme loading <60 IFPU, i.e., 19 and 13% at 15 and 30 IFPU, respectively. Such an increase in digestibility was not explained clearly from the experimental results. It was also found that ink removal before enzymatic hydrolysis is very important to enhance digestibility.  相似文献   

9.
Steam treatment of an industrial process stream, denoted starch-free wheat fiber, was investigated to improve the formation of monomeric sugars in subsequent enzymatic hydrolysis for further bioconversion into ethanol. The solid fraction in the process stream, derived from a combined starch and ethanol factory, was rich in arabinose (21.1%), xylose (30.1%), and glucose (18.6%), in the form of polysaccharides. Various conditions of steam pretreatment (170–220°C for 5–30 min) were evaluated, and their effect was assessed by enzymatic hydrolysis with 2 g of Celluclast + Ultraflo mixture/ 100 g of starch-free fiber (SFF) slurry at 5% dry matter (DM). The highest overall sugar yield for the combined steam pretreatment and enzymatic hydrolysis, 52g/100 g of DM of SFF, corresponding to 74% of the theoretical, was achieved with pretreatment at 190°C for 10 min followed by enzymatic hydrolysis.  相似文献   

10.
Computational fluid dynamic simulations are employed to predict flow characteristics in a continuous auger driven reactor designed for the dilure acid pretreatment of biomass. Slurry containing a high concentration of biomass solids exhibits a high viscosity, which poses unique mixing issues within the reactor. The viscosity increases significantly with a small increase in solids concentration and also varies with temperature. A well-mixed slurry is desirable to evenly distribute acid on biomass, prevent buildup on the walls of the reactor, and provides an uniform final product. Simulations provide flow patterns obtained over a wide range of viscosities and pressure distributions, which may affect reaction rates. Results provide a tool for analyzing sources of inconsistencies in product quality and insight into future design and operating parameters.  相似文献   

11.
ASPEN-PlusŖ process modeling software is used to model carbonic acid pretreatment of biomass. ASPEN-Plus was used because of the thorough treatment of thermodynamic interactions and its status as a widely accepted process simulator. Because most of the physical property data for many of the key components used in the simulation of pretreatment processes are not available in the standard ASPEN-Plus property databases, values from an in-house database (INHSPCD) developed by the National Renewable Energy Laboratory were used. The standard non-random-two-liquid (NRTL) or renon route was used as the main property method because of the need to distill ethanol and to handle dissolved gases. The pretreatment reactor was modeled as a “black box” stoichiometric reactor owing to the unavailability of reaction kinetics. The ASPEN-Plus model was used to calculate the process equipment costs, power requirements, and heating and cooling loads. Equipment costs were derived from published modeling studies. Wall thickness calculations were used to predict construction costs for the high-pressure pretreatment reactor. Published laboratory data were used to determine a suitable severity range for the operation of the carbonic acid reactor. The results indicate that combined capital and operating costs of the carbonic acid system are slightly higher than on H2SO4-based system and highly sensitive to reactor pressure and solids concentration.  相似文献   

12.
A batch reactor was employed to steam explode corn fiber at various degrees of severity to evaluate the potential of using this feedstock as part of an enzymatically mediated cellulose-to-ethanol process. Severity was controlled by altering temperature (150–230°C), residence time (1–9 min), and SO2 concentration (0–6% [w/w] dry matter). The effects of varying the different parameters were assessed by response surface modeling. The results indicated that maximum sugar yields (hemicellulose-derived water soluble, and cellulose-derived following enzymatic hydrolysis) were recovered from corn fiber pretreated at 190°C for 5 minutes after exposure to 3% SO2. Sequential SO2-catalyzed steam explosion and enzymatic hydrolysis resulted in a conversion efficiency of 81% of the combined original hemicellulose and cellulose in the corn fiber to monomeric sugars. An additional posthydrolysis step performed on water soluble hemicellulose stream increased the concentration of sugars available for fermentation by 10%, resulting in the high conversion efficiency of 91%. Saccharomyces cerevisiae was able to ferment the resultant corn fiber hydrolysates, perhydrolysate, and liquid fraction from the posthydrolysis steps to 89, 94, and 85% of theoretical ethanol conversion, respectively. It was apparent that all of the parameters investigated during the steam explosion pretreatment had a significant effect on sugar recovery, inhibitory formation, enzymatic conversion efficiency, and fermentation capacity of the yeast.  相似文献   

13.
A shrinking-bed reactor was designed by the National Renewable Energy Laboratory to maintain a constant bulk packing density of cellulosic biomass. The high solid-to-liquid ratio in the pretreatment process allows a high sugar yield and avoids the need to flush large volumes of solution through the reactor. The shrinking-bed reactor is a promising pretreatment reactor with the potential for scale-up for commercial applications. To scale up the shrinking-bed reactor, it is necessary to understand the flow pattern in the reactor. In this study, flow field is simulated with computational fluid dynamics using a porous medium model. Different discrete “snapshots” and multiple steady states are utilized. The bulk flow pattern, velocity distribution, and pressure drop are determined from the simulation and can be used to guide reactor design and scale-up.  相似文献   

14.
Over the past three decades ethanol production in the United States has increased more than 10-fold, to approx 2.9 billion gal/yr (mid-2003), with ethanol production expected to reach 5 billion gal/yr by 2005. The simultaneous coproduction of 7 million t/yr of distiller's grain (DG) may potentially drive down the price of DG as a cattle feed supplement. The sale of residual DG for animal feed is an important part of corn dry-grind ethanol production economics; therefore, dry-grind ethanol producers are seeking ways to improve the quality of DG to increase market penetration and help stabilize prices. One possible improvement is to increase the protein content of DG by converting the residual starch and fiber into ethanol. We have developed methods for steam explosion, SO2, and dilute-sulfuric acid pretreatment of DG for evaluation as a feedstock for ethanol production. The highest soluble sugar yields (∼77% of available carbohydrate) were obtained by pretreatment of DG at 140°C for 20 min with 3.27 wt% H2SO4. Fermentation protocols for pretreated DG were developed at the bench scale and scaled to a working volume of 809 L for production of hydrolyzed distiller's grain (HDG) for feeding trials. The pretreated DG was fermented with Saccharomyces cerevisiae D5A, with ethanol yields of 73% of theoretical from available glucans. The HDG was air-dried and used for turkey-feeding trials. The inclusion of HDG into turkey poult (as a model non-ruminant animal) diets at 5 and 10% levels, replacing corn and soybean meal, showed weight gains in the birds similar to controls, whereas 15 and 20% inclusion levels showed slight decreases (−6%) in weight gain. At the conclusion of the trial, no negative effects on internal organs or morphology, and no mortality among the poults, was found. The high protein levels (58–61%) available in HDG show promising economics for incorporation of this process into corn dry-grind ethanol plants.  相似文献   

15.
Applied Biochemistry and Biotechnology -  相似文献   

16.
Nowadays, there is a great pressure on finding an alternative source of energy. One such source is biomass combustion. Biomass is any organic matter such as wood, crops, seaweed, and animal wastes that during combustion emits energy but also smoke and solid residue. Biomass burning tracers, such as levoglucosan, mannosan and galactosan, are sugar anhydrides produced during burning of biomass that contain cellulose and hemicellulose. Analysis of environmental samples for tracers is the source of information about the type of biofuel burned. In this article, a literature review of the preparation and determination of biomass burning tracers for environmental samples was presented. The review discusses the preparation of different samples (particulate matter, soils, sediments, biological samples), extraction, derivatization, and determination. Amongst determination methods the most popular was gas chromatography with mass spectrometry but other techniques were also used, such as high‐performance liquid chromatography with aerosol charge detection, capillary electrophoresis with pulsed amperometric detection, and ion chromatography with pulsed amperometric detection.  相似文献   

17.
A combined heat transfer/kinetic model was developed to quantify temperature variations in small tubular batch reactors and estimate the effect of deviations from isothermal operation on the kinetics of biomass pretreatment. Assuming that heat transfer was dominated by conduction in the radial direction, a classic parabolic time-dependent partial differential equation was applied to describe the temperature in the system and dedimensionalized to provide a single solution for application to all situations. A dimensionless expression for the reaction kinetics for xylan hydrolysis was then developed, and a single parameter expressed as the dimensionless ratio of the first-order rate constant times the tube radius squared divided by the thermal diffusivity was found to control the reaction rate. Three different characterizations of the deviation between the concentration profile predicted for isothermal xylan hydrolysis and that based on the transient temperature were directly related to this dimensionless rate constant parameter for both catalyzed and uncatalyzed hydrolysis kinetics. These results were then used to project the relationship between deviations in yield from isothermal results and the tube radius and reaction time.  相似文献   

18.
将温控结构单元聚醚链和催化氧化基团磷钨酸根共同引入到离子液体的结构中, 合成出一系列不同聚合度的十八胺类氧化-温控双功能离子液体, 并将其应用于催化O2氧化模拟柴油的脱硫反应过程, 实现了反应分离一体化, 并取得了良好的脱硫效果和催化剂循环使用效果. 该类离子液体在甲苯/正十二烷混合溶剂中具有良好的温控性能. 筛选出活性较高的离子液体催化剂, 其聚合度n=111以及烷基碳链为C12. 考察了反应温度、反应时间和氧气压力等因素对脱硫效果的影响. 在优化的反应条件(V(甲苯):V(模拟油)=1:1, T=100 ℃, t=2 h, p(O2)=2.0 MPa)下, DMF萃取一次, 脱硫率接近100%. 催化剂循环使用11次, 脱硫率仍可达到95%以上.  相似文献   

19.
For many lignocellulosic substrates, hemicellulose is biphasic upon dilute-acid hydrolysis, which led to a modified percolation process employing simulated two-stage reverse-flow. This process has been proven to attain substantially higher sugar yields and concentrations over the conventional single-stage percolation process. The dilute-acid pretreatment of biomass solubilizes the hemicellulose fraction in the solid biomass, leaving less solid biomass in the reactor and reducing the bed. Therefore, a bed-shrinking mathematic kinetic model was developed to describe the two-stage reverse-flow reactor operated for hydrolyzing biphasic substrates, including hemicellulose, in corn cob/stover mixture (CCSM). The simulation indicates that the shrinking-bed operation increases the sugar yield by about 5%, compared to the nonshrinking bed operation in which 1 reactor volume of liquid passes through the reactor (i.e.,t = 1.0). A simulated optimal run further reveals that the fast portion of hemicellulose is almost completely hydrolyzed in the first stage, and the slow portion of hemicellulose is hydrolyzed in the second stage. Under optimal conditions, the bed shrank 27% (a near-maximum value), and a sugar yield over 95% was attained.  相似文献   

20.
The enzymatic digestibility of ammonia fiber explosion (AFEX)-treated rice straw was modeled by statistically correlating the variability of samples to differences in treatment using several different analytical techniques. Lignin content and crystallinity index of cellulose affect enzymatic hydrolysis the most. X-ray diffraction was used to measure the crystallinity index (CrI), while fluorescence and diffuse reflectance infrared (DRIFT) spectroscopy measured the lignin content of the samples. Multivariate analysis was applied to correlate the enzymatic hydrolysis results of the various samples with X-ray diffraction and spectroscopic data. Principal component analysis (PCA) and multilinear regression (MLR) techniques did not accurately predict the digestibility of the rice straw samples. The best correlation (R value of 0.775) was found between the treatment conditions of the AFEX process and the concentration of xylose at 24 h after enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号