首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductivity of five semi-crystalline and four amorphous polymers was determined within a wide range of temperature, starting at room temperature and going up to temperatures above the polymer melting point (Tm) for semi-crystalline polymers or above the glass transition temperature (Tg) for amorphous polymers. Two transient techniques were employed in the experimental investigation: the hot wire technique for the group of amorphous polymers, and the laser flash technique for the semicrystalline polymers. As expected, the experimental results show that Tg exerts a measureable influence on the thermal conductivity of amorphous polymers. In the case of semi-crystalline polymers, a singular behaviour of the thermal conductivity is observed within the Tm range. In order to explain the anomalous behaviour, the influence of these transition temperatures on the thermal conductivity behaviour with temperature has been analysed in terms of a phonon conduction process and temperature variations of specific heat and modulus of elasticity of the analyzed polymers.  相似文献   

2.
The thermal, mechanical and thermo-mechanical properties of polymer compositions, containing synthetic biodegradable polymers i.e. polylacide (PLA) and aliphatic-aromatic copolyester (BTA), natural biopolyester n-PHB and its synthetic atactic analog (a-PHB) were investigated. Thermal properties of the polymer compositions were studied by means of DSC . The compositions of various polymer weight ratio were tested. Compositions containing BTA and n-PHB create polyphase systems, what was confirmed by DSC. In this case the two Tg and two Tm values were observed. Polymer compositions containing PLA and BTA showed different behaviours. At the BTA content up to 30 weight % only one Tg and one Tm were indicated. At the increase of the BTA content to 50% weight and above, the two Tg, and two Tm were observed. Mixtures of BTA with n-PHB, PLA and with a-PHB show considerably greater values of the strain (ε) in comparison with initial polymers (n-PHB, PLA). It was found that in contrary to mixtures containing PLA, at the BTA content in the mixture with n-PHB above 50% of weights increases not only the strain, but also the stress at break (σ). Strong increase of the ε value in PLA/a-PHB mixtures with the content of a-PHB above 30% of weights were observed.  相似文献   

3.
This review is focused on the use of ionomers in shape memory polymers. Ionomers are polymers that contain less than ∼15% ionic groups. The incompatibility between the ion-pairs and the polymer backbone drives microphase separation producing dispersed ionic aggregates, which can physically crosslink the polymer. Shape memory polymers are responsive materials that can be deformed to program a temporary shape and then recovered on application of an external stimulus. Through the review of the main types of ionomers used in shape memory polymers, polyurethanes and polyester ionomers, polyolefin and polyaromatic ionomers, and perfluorosulfonic acid ionomers (i.e., Nafion®) it will be shown that ionomers can produce robust thermoplastic shape memory polymers and in many cases impart unique properties which allow advanced shape memory materials to be obtained including antibacterial, high temperature, and multishape memory polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1389–1396  相似文献   

4.
Biodegradable polylactide (PLA) and its copolymers with shape memory properties have attracted great interests because of their important application prospects in biomedical field. In this study, random poly(L‐lactide‐co‐trimethylene carbonate‐co‐ε‐caprolactone) (LTCL) terpolymers with different molar ratio were synthesized and characterized. Monomer ε‐caprolactone (ε‐CL) was used in this study instead of glycolide in preliminary study of LTG terpolymers to investigate the transition temperature and the shape memory performance. Characterization on crystallization, mechanical properties, shape fixing, and recovery ratios of the terpolymers was conducted to investigate the correlation between crystallization and shape memory performance of LTCL terpolymers. The results are consistent with the formation of crystallized LLA segments, which could act as crosslinks, strengthened the stationary phase within the polymer matrix, and significantly improved the shape memory performance of LTCL terpolymers. For example, LTCL801010 is a crystalline polymer with high shape fixity and shape recovery ratio; its shape recovery temperature is 39°C. LTCL terpolymers with high CL content do not show shape memory performance for the rubbery at room temperature. Based on this study, PLA materials with shape memory property can be designed through the selection of monomers or the adjustment of comonomer ratio. These polymers with recovery temperature close to 37°C are expected to be used in human body such as scaffolds in tissue engineering.  相似文献   

5.
In this paper, shape memory polymers based on poly(vinyl alcohol) (SM-PVA) cross-linked with different contents of glutaraldehyde were prepared. Because PVA is a hydrophilic polymer, all samples prepared always have a small number of water molecules exposed to air, and the water molecules are helpful for shape memory characteristics. The influences of water contents on the prepared materials were investigated. The properties of SM-PVA were investigated by dynamic–mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. Shape memory behavior of SM-PVA, depending on the switching of chain segments, occurred at around T g. Thermo-mechanical cycle test was performed to investigate shape memory properties, including the percentage shape recovery, shape recovery ratio, and percentage shape fixity. The studied materials show promising shape memory and cyclic behavior indicative of potential applications of SM-PVA as shape memory materials.  相似文献   

6.
It is known that particular types of semi‐crystalline/elastomer polymer blends exhibit shape memory effects (SME) due to the dispersion of two immiscible phases. In this study, the crystal structure of polylactic acid (PLA)/ thermoplastic polyurethane (TPU) based shape memory polymer (SMP) is altered by incorporating small amounts of montmorillonite (MMT) nanoclay. The results indicate the incorporation of MMT can improve the compatibility of the two different polymers. Moreover, the presence of MMT affects the total crystallinity of the SMP and improves mechanical properties. Lastly, uniaxial stretching deformation can be applied to the SMP at room temperature conditions while maintaining its shape memory properties. With 1 wt % MMT particles, the recovery ratio (Rr) was nearly 95%, which indicated a strong recovery effect. The shape‐fixing ratio (Rf) remained above 95% for all composites due to plastic deformation applied at room temperature. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1197–1206  相似文献   

7.
For nonpolymeric supercooled liquids, the empirical correlation m = 56Tg DeltaCp(Tg)/DeltaHm provides a reliable means of correlating dynamic and thermodynamic variables. The dynamics are characterized by the fragility or steepness index m and the glass transition temperature Tg, while thermodynamics enter in terms of the heat capacity step DeltaCp at Tg and the melting enthalpy DeltaHm. The combination of the above correlation with the 23 rule for the Tg/Tm ratio yields an expression, m = 40DeltaCp(Tg)/DeltaSm, which was rationalized as the correlation of the thermodynamic and kinetic fragilities. Defining a thermodynamic fragility via DeltaCp(Tg)/DeltaSm also reveals that the slopes in Kauzmann's original DeltaS(T)/DeltaSm versus T/Tm plot reflect the fragility concept [Chem. Rev. 43, 219 (1948)], so long as Tm/Tg = 1.5. For the many liquids whose excess heat capacity is a hyperbolic function of temperature, we deduce that the fragility cannot exceed m = 170, unless the Tg/Tm = 2/3 rule breaks down.  相似文献   

8.
The recent rapid development of technology has demanded smart materials with tailoring a bridge between macro properties and sophisticated micro and nano characteristic. Principally, shape memory polymers (SMPs) will come to play as an indispensable part of numerous aspects of human activity. Nevertheless, the low mechanical strength and thermal conductivity of SMPs have primarily restricted their applications. To impart shape memory behaviour and mechanical properties, we fabricated a series of composites by a feasible and commercial melt-mixing method. Thus, a series of fast heat-actuated shape memory polymer composite with greatly enhanced stretch-ability, mechanical stiffness, dynamic-modulus, rheological qualities, recovery and fixity ratio was prepared by incorporating multi-walled carbon nanotubes (CNT), montmorillonite (MMT) and CNT:MMT hybrid into thermoplastic polyurethane (TPU). Noteworthy, CNT-based specimens exhibited superior mechanical properties than those of MMT-based samples, and interestingly, the hybrid composites featured a synergistic effect due to the sacrificial role of MMT nanoplatelets for adjusting the dispersion of CNT nanotubes. Microstructural observations indicated that the crystallization percentages of the composites were generally higher than that of pristine TPU; therefore, the shape-memory performance of the specimens improved notably in the case of the hybrid composites owing to creating more interfacial zone with CNT:MMT nanoparticles as compared to other simple composites. This study proved that the simultaneous incorporation of CNT and MMT nanoparticles not only granted outstanding mechanical properties, but also improved the overall shape memory behaviour of the composites by systematical localization of the nanoparticles without any functionalization or modification.  相似文献   

9.
郑宁  谢涛 《高分子学报》2017,(11):1715-1724
动态共价交联聚合物的研究具有悠久的历史,其早期的工作着眼于如何解决应力松弛带来的聚合物材料力学性能降低的问题.20世纪90年代以来,利用动态共价键来主动设计聚合物网络的特殊可适性逐渐成为研究主流,其中包括自修复和重加工性.然而,受到动态共价键的种类、通用性及所实现功能的特异性等限制,对于动态共价交联聚合物网络的研究尚停留在基础阶段.本文以本课题组近期在动态共价交联形状记忆聚合物的研究为基础,结合其他相关工作,展示了通用共价键(酯键及氨酯键)的动态可逆性,并利用其设计了具有特殊性能和潜在商业化价值的形状记忆聚合物.在此基础上,我们提出分子结构设计及宏观性能均不同于传统热塑性和热固性形状记忆聚合物的第3类形状记忆聚合物,即热适性形状记忆聚合物.  相似文献   

10.
In order to develop the polymer materials having temperature-sensitive and high biological safety, Eudragit RS-PO and polyethylene glycol 400 (PEG 400) blend polymers (EPG) were prepared. The EPGs that have the glass transition temperature (Tg) at around the body temperature were prepared by the addition of 5--13% PEG 400 to Eudragit RS. As glassy polymers are not in thermodynamic equilibrium below their Tg, the effects of isothermal aging on the T(g)s of Eudragit RS and EPG containing 10% PEG 400 (10% EPG) were also studied at various aging temperatures. The Tg values of Eudragit RS increased with the aging time and after 30 d of aging, they apparently reached constant values which markedly differed depending on the aging temperatures. On the other hand, the Tg values of 10% EPG were almost independent of the aging temperature and reached around 33 degrees C at 30 d after aging. The ability as thermo-sensitive polymer of EPG was evaluated by the dissolution test of the acetaminophen (AAP) matrix tablets prepared with EPG. The AAP release rate from the EPG matrix tablets slightly changed below the Tg of tablets, and then, it markedly increased above the Tg. Considering high biological safety of Eudragit RS and PEG 400, EPG might be available to develop the novel thermo-sensitive drug delivery systems.  相似文献   

11.
Shape memory polymers were prepared by copolymerizing stearyl acrylate and methyl acrylate. The principle of this shape memory effect is based on reversible order-disorder transition of crystalline aggregates of stearyl moieties. A specific feature of this type of shape memory copolymer is that the transition temperature at which the polymer abruptly becomes soft and deforms can be controlled by changing the monomer composition, which enables one to adjust the shape memory effect at a desired temperature. Mechanism and process of the shape memory behaviors were discussed.  相似文献   

12.
When dealing with smart polymers, in particular with shape memory polymers, the polymer type and composition specify the overall material properties and in particular the extent of the shape memory effect. Polybenzoxazines as a polymer with high potential for structural applications represent a promising component for materials with both shape memory effect and structurally interesting material properties. This minireview gives insight into how the shape memory effect, in particular the shape recovery event, is influenced by internal factors such as polymer structure, morphology and external factors such as filler addition.  相似文献   

13.
采用TA-Q800动态热机械分析仪(DMA)研究了聚乙烯基对苯二甲酸二(对丁氧基苯)酯(PBPCS)纤维的形变回复性能,发现PBPCS纤维具有非常好的形状记忆效应,在145℃及以上温度,形状回复速率最好,9min左右可以从400%的伸长回复到原来的尺寸,于145℃,重复实验5次,结果说明形变回复重复性好.二维X衍射(2DX-Ray)研究显示形变前后PBPCS柱状分子直径d由2.54nm变为2.42nm,表明拉伸后PBPCS螺旋状的大分子主链处于更为伸直的构象,因此分子主链产生一定的内应力,即形变回复应力.由此可见,PBPCS相对柔性的聚乙烯主链使纤维具有良好的形变回复性能,而侧基的甲壳效应使得纤维能够保持初始尺寸,即PBPCS所具有的类似弹簧的特殊螺旋状分子结构是其纤维具有形状记忆效应的内在原因.  相似文献   

14.
Bisphenol A-type cyanate ester (BACE) was modified by carboxyl terminated liquid nitrile rubber (CTBN) exhibiting shape memory properties. Shape memory BACE/CTBN copolymer was a new kind of smart materials, which has huge development potential and promising future. A series of shape memory BACE/CTBN copolymers were prepared by varying mass ratio of BACE and CTBN. The mechanical performance, thermal properties, and shape memory effect of the BACE/CTBN copolymers were systematically investigated. It was found that the BACE/CTBN copolymers have excellent shape-memory behavior, and the glass transition temperature (T g ) of the copolymers can be adjusted with the content of CTBN. The shape recovery speed increases with the increment of the content of CTBN and the shape fixed ratio and shape recovery ratio are almost 100 %.  相似文献   

15.
Covalently crosslinked polyurethane/urea polymers were synthesized using diamine monomers modified with pendant glucose groups and 2,4‐toluene diisocyanate, poly(ethylene glycol) (PEG), and 1,1,1‐tris(hydroxymethyl)ethane (triol) comonomers. The polymers showed shape memory behavior with a switching temperature dependent on the glass transition temperature. The glass transition temperature is tuned by varying the mole ratio between the glucose‐diamine and PEG used in the polymerization. Increasing PEG content resulted in decreasing glass transition temperature, and a glass transition temperature of 39 °C, close to physiological temperatures, was obtained. The fixed shape showed gradual shape recovery behavior, but a fixity of 70% was achieved when the material was stored at 25 °C. The polymer recovered to the permanent shape when heated to 50 °C. Finally, the surface of a film of the polymer can be sulfated to achieve increased blood‐compatibility without sacrificing the shape memory properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2252–2257  相似文献   

16.
Three novel conjugated polymers based on 9,9′-dioctylfluorene unit and isoindolo[2,1-a]benzimidazol-11-one with different fluorine substituents (0, 2 and 4) were synthesized. PLED and resistive memory devices based on these polymers were prepared consequently. PLED based on four-fluorinated polymer showed the highest maximum brightness of 3192 cd m−2 with almost 5-fold increase of current efficiency 8-fold increase of external quantum efficiency compared to that of the other two, and all the PLEDs exhibited good emission stability with no noticeable change of electroluminescence even under high voltage of 10 V. The memory device of doubly-fluorinated polymer exhibited ternary flash behavior with threshold voltages below −2.5 V, while device of four-fluorinated polymer possessed ON/OFF current ratio above 104. Impact of fluorine substitutions on the performance of devices were briefly investigated. The results revealed that the improvement of device performance might not scale with the increasing number of fluorine substitutions, and the four-fluorine-substituted polymer and doubly-fluorinated polymer could be encouraging materials for applications of PLED and resistive memory device and worth of further design of other new polymer systems.  相似文献   

17.
以偏苯三甲酸酐酰氯(TMAc),对苯二甲酰氯(TPC),1,4-二(4-苯氧基苯甲酰基)苯(p-EKKE)为单体,采用亲电溶液共缩聚,通过改变TMAc、TPC的摩尔比,制备了系列含羧基侧基的聚芳醚酮树脂(PEK-A).在对甲苯磺酸催化下与苯酚进行酯化反应合成了系列主链带芳酯侧基的聚芳醚酮树脂(PEK-COO-Ar).用...  相似文献   

18.
Shape-memory materials can be mechanically deformed and subsequently reverse the deformation upon changing the temperature. Shape-memory materials have attracted considerable attention for basic research and industrial applications, and polymer and alloy shape-memory materials have been well studied; however, it is formidably challenging to develop functional shape-memory materials, such as materials with multi-stage and anisotropic shape changes and shape changes accompanied by changes in color and light emission. Here, we found a reversible multi-stage shape-changing effect after mechanical deformation in a molecular crystal induced by multi-step thermal phase transitions with reversible shape changes and luminescence-color changes. Using single-crystal structure and thermal analyses as well as mechanical property measurements, we found that the reversible multi-stage shape-changing effect was achieved by a combination of a twinning deformation and multi-step thermal phase transitions. The changes in the crystal shape and luminescence suggest novel strategies for imparting known shape-memory materials with additional functionalities.

A reversible multi-stage shape-changing material based on an organic crystalline material is presented. Intriguingly, the interconversion among the three different shapes is accompanied by changes of the luminescence color.  相似文献   

19.
研究蓖麻油聚氨酯/取代乙烯共聚物的互穿网络物(IPN)的生成特点指出,其中取代乙烯游离基共聚的氧化还原引发剂组份-过氧化苯甲酰或二甲基苯胺都能加速聚氨酯网络(Pu)的生成。反应温度在 30℃以上蓖麻油也能参与游离基共聚。蓖麻油不仅与TDI反应生成Pu网络,而且也有小部分参与取代乙烯共聚物长枝链的形成。Pu网络的形成较长枝链的生成为快。生成Pu网络时所放出的热促进取代乙烯与少量蓖麻油的双键共聚,最后生成的IPN不溶于甲苯。这表明生成的是接技的半IPN,而不是单纯的半IPN。动态力学研究指出,包含聚苯乙烯或聚甲基丙烯酸甲酯的这种IPN呈现二个T_g,而只包含聚丙烯腈的仅一个T_g,说明后一IPN中相容性较好,有较多的分子混合。随着聚氨酯与聚取代乙烯的比例减少,二个T_g间的差距减少,而较高温度的T_g随取代乙烯共聚物中丙烯腈含量增加而变小。  相似文献   

20.
Bionanocomposites with thermally-activated shape memory ability have been designed based on a synthesized poly(ester-urethane) matrix reinforced with both neat and functionalized cellulose nanocrystals. The functionalization of the cellulose nanocrystals was performed by grafting poly(l-lactic acid) (PLLA) chains onto their surface. The matrix has a block copolymer structure of two biodegradable and biocompatible polymers, poly(ε-caprolactone) (PCL) and PLLA. This research is focused on the effects of cellulose nanofillers on the thermally-activated shape memory response of the neat matrix confirming that the bionanocomposites are able to show shape memory effects at 35 °C, close to the human body temperature, making these materials good candidates for biomedical applications. Three thermo-mechanical cycles at 50 % of deformation were performed in order to check the thermally-activated shape memory ability of the bionanocomposites and to determine the shape memory parameters, namely the strain fixity (Rf), and the strain recovery (Rr) ratio. Both bionanocomposites, with neat and functionalized cellulose nanocrystals, present excellent shape memory behaviour maintaining the recovery behaviour at values of about 90 % as measured previously for the pure matrix, indicating that the addition of the nanofiller maintains the good ability to recover the initial shape of the matrix. The cellulose nanofillers clearly improve the ability of the polymer to fix the temporary shape. In fact, the bionanocomposites show Rf at about 90 %. Moreover, bionanocomposites reinforced with the functionalized cellulose nanocrystals maintain constant their performance during all the thermo-mechanical cycles thus confirming that the improvement in the shape memory behaviour can be mainly attributed to the increase of the interactions between the functionalized cellulose nanocrystals with the polymeric matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号