首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
含开边界二维Stokes问题的Galerkin边界元解法   总被引:1,自引:1,他引:0  
王小军  祝家麟 《计算数学》2010,32(3):305-314
本文推导了含有开边界的二维有限域上Stokes问题的边界积分方程, 得出基于单层位势的第一类间接边界积分方程.对与之等价的边界变分方程用Galerkin边界元求解以得出单层位势的向量密度. 对于含有开边界端点的边界单元,采用特别的插值函数, 以模拟其固有的奇异性.论文用若干数值算例模拟了含有开边界的有限区域上不可压缩粘性流体的绕流.    相似文献   

2.
A mixed boundary element formulation is presented for convection-diffusion problems with a velocity profile. In this formulation the convection-diffusion equation is considered as a nonlinear diffusion equation with inhomogeneous terms in which the convective term is involved additionally, because the spatial distribution of the drift velocity cannot be straightforwardly expressed in boundary integral form. Accordingly, a corresponding boundary integral equation may be described usually in the form of a so-called hybrid-type boundary integral equation.

In the present paper, mixed boundary elements are employed in a discrete model of the original convection-diffusion system. In the mixed element, potentials are approximated linearly, and their normal derivatives to boundaries are assumed constant. A simple iterative scheme is adopted in order to solve hybrid-type mixed boundary element equations. Simple three-dimensional models are dealt with in numerical experiments. The proposed approach gives more accurate and stable solutions compared with constant boundary elements which have been reported.  相似文献   


3.
Summary. This paper analyzes the rate of convergence of the h-p version of the coupling of the finite element and boundary element method for transmission problems with a linear differential operator with variable coefficients in a bounded polyhedral domain and with constant coefficients in the exterior domain . This procedure uses the variational formulation of the differential equation in and involves integral operators on the interface between and . The finite elements are used to obtain approximate solutions of the differential equation in and the boundary elements are used to obtain approximate solutions of the integral equations. For given piecewise analytic data we show that the Galerkin solution of this coupling procedure converges exponentially fast in the energy norm if the h-p version is used both for finite elements and boundary elements. Received February 10, 1996 / Revised version received April 4, 1997  相似文献   

4.
In linear poroelasticity so far only collocation boundary element methods have been available. However, in some applications, e.g., when coupling with finite elements is desired, a symmetric formulation is preferable. Choosing a Galerkin approach which involves the second boundary integral equation, such a formulation is possible. Here, a previously presented integration by part technique for the regularization of the first boundary integral equation is extended to the second boundary integral equation as well. While the weakly singular representation of the double layer operator has been presented before, the emphasis lies here on the so called hyper-singular boundary integral operator. Due to the regularization, this operator can be evaluated numerically and, hence, be used within a numerical scheme for the first time. Different numerical studies will be presented to show the behavior of the established symmetric Galerkin boundary element method, also comparing it with collocation boundary element methods. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The dual reciprocity boundary element method employing the step by step time integration technique is developed to analyse two-dimensional dynamic crack problems. In this method the equation of motion is expressed in boundary integral form using elastostatic fundamental solutions. In order to transform the domain integral into an equivalent boundary integral, a general radial basis function is used for the derivation of the particular solutions. The dual reciprocity boundary element method is combined with an efficient subregion boundary element method to overcome the difficulty of a singular system of algebraic equations in crack problems. Dynamic stress intensity factors are calculated using the discontinuous quarter-point elements. Several examples are presented to show the formulation details and to demonstrate the computational efficiency of the method.  相似文献   

6.
A weakly singular integral equation of the first kind on a plane surface piece Γ is solved approximately via the Galerkin method. The determination of the solution of this integral equation (with the single-layer potential) is a classical problem in physics, since its solution represents the charge density of a thin, electrified plate Γ loaded with some given potential. Using piecewise constant or piecewise bilinear boundary elements we derive asymptotic estimates for the Galerkin error in the energy norm and analyse the effect of graded meshes. Estimates in lower order Sobolev norms are obtained via the Aubin–Nitsche trick. We describe in detail the numerical implementation of the Galerkin method with both piecewise-constant and piecewise-linear boundary elements. Numerical experiments show experimental rates of convergence that confirm our theoretical, asymptotic results.  相似文献   

7.
Olaf Steinbach 《PAMM》2003,3(1):539-542
A hierarchical multilevel preconditioner is constructed for an efficient solution of a first kind boundary integral equation with the single layer potential operator discretized by a boundary element method. This technique is based on a hierarchical clustering of all boundary elements as used in fast boundary element methods. This hierarchy is applied to define a sequence of nested boundary element spaces of piecewise constant basis functions as used in the definition of the preconditioning multilevel operator.  相似文献   

8.
A hypersingular boundary integral equation of the first kind on an open surface piece Γ is solved approximately using the Galerkin method. As boundary elements on rectangles we use continuous, piecewise bilinear functions which vanish on the boundary of Γ. We show how to compensate for the effect of the edge and corner singularities of the true solution of the integral equation by using an appropriately graded mesh and obtain the same convergence rate as for the case of a smooth solution. We also derive asymptotic error estimates in lower-order Sobolev norms via the Aubin–Nitsche trick. Numerical experiments for the Galerkin method with piecewise linear functions on triangles demonstrate the effect of graded meshes and show experimental rates of convergence which underline the theoretical results.  相似文献   

9.
M. Wagner  L. Gaul 《PAMM》2002,1(1):12-13a
The so‐called hybrid stress boundary element method (HSBEM) is introduced in a frequency domain formulation for the computation of acoustic radiation and scattering in closed and in finite domains. Different from other boundary element formulations, the HSBEM is based on an extended Hellinger‐Reissner variational principle and leads to a Hermitian, frequency‐dependent stiffness equation. Due to this, the method is very well suited for treating fluid structure interaction problems since the effort for the coupling the structure, discretized by a finite elements, and the fluid, discretized by the HSBEM is strongly reduced. To arrive at a boundary integral formulation, the field variables are separated into boundary variables, which are approximated by piecewise polynomial functions, and domain variables, which are approximated by a superposition of singular fundamental solutions weighed by source strength. This approximation cancels the domain integral over the equation of motion in the hybrid principle and leads to a boundary integral formulation, incorporating singular integrals. Comparing to previous results published by the authors, new considerations concerning the interpretation of singular contributions in the stiffness matrix for exterior domain problems are communicated here.  相似文献   

10.
This paper presents a local Hermite radial basis function interpolation scheme for the velocity and pressure fields. The interpolation for velocity satisfies the continuity equation (mass conservative interpolation) while the pressure interpolation obeys the pressure equation. Additionally, the Dual Reciprocity Boundary Element method (DRBEM) is applied to obtain an integral representation of the Navier-Stokes equations. Then, the proposed local interpolation is used to obtain the values of the field variables and their partial derivatives at the boundary of the sub-domains. This interpolation allows one to obtain the boundary values needed for the integral formulas for velocity and pressure at some nodes within the sub-domains. In the proposed approach the boundary elements are merely used to parameterize the geometry, but not for the evaluation of the integrals as it is usually done. The presented multi-domain approach is different from the traditional ones in boundary elements because the resulting integral equations are non singular and the boundary data needed for the boundary integrals are approximated using a local interpolation. Some accurate results for simple Stokes problems and for the Navier-Stokes equations at low Reynolds numbers up to Re = 400 were obtained.  相似文献   

11.
Alternative representations of boundary integral operators corresponding to elliptic boundary value problems are developed as a starting point for numerical approximations as, e.g., Galerkin boundary elements including numerical quadrature and panel-clustering. These representations have the advantage that the integrands of the integral operators have a reduced singular behaviour allowing one to choose the order of the numerical approximations much lower than for the classical formulations. Low-order discretisations for the single layer integral equations as well as for the classical double layer potential and the hypersingular integral equation are considered. We will present fully discrete Galerkin boundary element methods where the storage amount and the CPU time grow only linearly with respect to the number of unknowns.

  相似文献   


12.
Summary In this paper the convergence analysis of a direct boundary elecment method for the mixed boundary value problem for Laplace equation in a smooth plane domain is given. The method under consideration is based on the collocation solution by constant elements of the corresponding system of boundary integral equations. We prove the convergence of this method, provide asymptotic error estimates for the BEM-solution and give some numerical examples.  相似文献   

13.
一个扩散问题的自然边界元法与有限元法组合   总被引:7,自引:0,他引:7  
本文讨论由Helmholtz方程描述的扩散问题的自然边界元法与有限元法的组合.取一个圆作为公共边界,用Fourier展开建立边界积分方程,将无界区域上的问题化为有界区域上的非局部边值问题.在变分方程中公共边界上的未知量只包含函数本身而不包含其法向导数,从而减少了未知数的数目,并且边界元剐度矩阵只有极少量不同的元素,有利于数值计算.这种组台方法优越于建立在直接边界元法基础上的组合方法.文中证明了变分解的唯一性,数值解的收敛性和误差估计.最后讨论了数值技术并给出一个算倒.  相似文献   

14.
This paper presents an integral equation formulation and its discretization scheme for the elastodynamic problem in which the material properties are prescribed as arbitrary, continuous and differentiable functions of the spatial coordinates. The formulation is made by using the Green's function for the corresponding problem in homogenous elasticity. From a weighted residual statement of the problem, the governing differential equation is transformed into a set of the integral equations in the inner domain as well as on the boundary. These integral equations are discretized by introducing a finite number of the boundary-volume-time elements, and the solution for the system of linear equations thus obtained is discussed.  相似文献   

15.
Laplace方程边值问题的边界积分方程法   总被引:2,自引:1,他引:1  
孙建设  叶留青 《数学季刊》2003,18(4):429-434
§ 1. Introduction  Inengineeringandtechnology ,theproblemofstaticelectricfieldscanbeattributedtotheboundaryproblemofLaplaceequationofstaticeletricpotentialfunction .Themethodsofclassi calmathematicalphysicscanbeonlyusedtosolveboundaryproblemofverysimpledomainandspecialboundarycondition .Althoughthemethodsoflimitedelementscanbeusedtosolvetheproblemsonarbitrarydomain ,butitneedstopartitionthewholedomainandtocalculateverycomplex .Theapproachofboundaryintegralequationistosolverelatedproblemsb…  相似文献   

16.
A new boundary integral equation formulation for solving plane elasticity problems involving orthotropic media is presented in this paper. Based on the real variable fundamental solutions of the considered problems, a limit theorem for the transformation from domain integral equations into boundary integral equations (BIEs) and a novel decomposition technique to the fundamental solutions, the regularized BIEs with indirect unknowns, which do not involve the direct calculation of CPV and HFP integrals, are established. The limiting process is done in global coordinates and no separate numerical treatment for strong and weak singular integrals was necessary. The current method does not need to transform the considered problems into isotropic ones as is normally done in the existing literature, so no inverse transform is required. The numerical implementation is carried out using both discontinuous quadratic elements and exact elements, which is developed to model its boundary with negligible error. The validity of the proposed scheme is demonstrated by three numerical examples. Excellent agreement between the numerical results and exact solutions was obtained even with using small amounts of element.  相似文献   

17.
由2个共轭的实调和函数构建1个复解析函数,其复分析在应用数学和力学领域具有重要的作用.提出了一个加权残数方程组,证明了该方程组为2个共轭函数的域内控制方程、边界条件和边界上Cauchy Riemann(柯西-黎曼)条件的近似解,等效为复解析函数的逼近方程.在离散空间中,由该加权残数方程分别推导出2个位势问题的直接边界积分方程和1个表示Cauchy-Riemann条件的有限差分方程,随后解决了弱奇异线性方程组的求解难题,并提出用Cauchy积分公式求内点值的方法,从而建立了一种用于复分析的常单元共轭边界元法.最后,用3个算例证明了所提出方法适用于域内或域外的幂函数、指数函数或对数函数形式的解析函数,而且其误差与2维位势问题是同等量级的.  相似文献   

18.
19.
D. Medková 《Acta Appl Math》2011,116(3):281-304
A weak solution of the Neumann problem for the Stokes system in Sobolev space is studied in a bounded Lipschitz domain with connected boundary. A solution is looked for in the form of a hydrodynamical single layer potential. It leads to an integral equation on the boundary of the domain. Necessary and sufficient conditions for the solvability of the problem are given. Moreover, it is shown that we can obtain a solution of this integral equation using the successive approximation method. Then the consequences for the direct boundary integral equation method are treated. A solution of the Neumann problem for the Stokes system is the sum of the hydrodynamical single layer potential corresponding to the boundary condition and the hydrodynamical double layer potential corresponding to the trace of the velocity part of the solution. Using boundary behavior of potentials we get an integral equation on the boundary of the domain where the trace of the velocity part of the solution is unknown. It is shown that we can obtain a solution of this integral equation using the successive approximation method.  相似文献   

20.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号