首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Residues and metabolism of 19-nortestosterone laurate in steers.   总被引:4,自引:0,他引:4  
The illegal use of 19-nortestosterone (19NT; 4-estren-17 beta-ol-3-one; nandrolone) and its esters in livestock, for growth promotion purposes, has been widely reported in the European Union. The target residues for surveillance of abuse in bovine urine and bile samples are 17 alpha- and 17 beta-19NT, although this choice of target residues is not based on in vivo radiotracer biotransformation data. In this study, four steers were administered [3H2]- and [2H3] 17 beta-19NT laurate (2 mg kg-1 body mass) by intramuscular injection and blood, urine, faeces and bile samples were taken for 30 d until slaughter, after which tissues were sampled for total residue analysis. Total plasma radiolabelled residues reached a maximum of 56.3 +/- 15.9 pmol ml-1 at 36 h and were still appreciable (13.3 +/- 1.6 pmol ml-1) 30 d after treatment. Throughout the study period, total residue concentrations in bile (about 2-16 nmol ml-1), urine and faeces (0.5-3 nmol ml-1 or g-1) were higher than in other tissues sampled at slaughter. At slaughter there was evidence of residue accumulation in pigmented eye tissue (33.1 +/- 6.1 pmol g-1) and in white (13.4 +/- 3.4 pmol g-1) and black hair (28.9 +/- 8.9 pmol g-1). Evaluation of radio-HPLC profiles of urine and bile extracts generally indicated that 19NT and 19NT laurate residues were present in relatively small amounts among a complex mixture of metabolites. GC-MS analysis of glucuronidase-hydrolysed bile extracts indicated that the major metabolites were 5 beta-estrane-3 alpha, 17 alpha-diol, 5 alpha-estrane-3 beta, 17 alpha-diol. 5 alpha-estran-3 alpha-ol-17-one (norandrosterone) and estra-1,3,5(10)-triene-3,17 alpha-diol (17 alpha-estradiol).  相似文献   

2.
Mass spectrometric and tandem mass spectrometric behavior of eight anabolic steroid glucuronides were examined using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in negative and positive ion mode. The objective was to elucidate the most suitable ionization method to produce intense structure specific product ions and to examine the possibilities of distinguishing between isomeric steroid glucuronides. The analytes were glucuronide conjugates of testosterone (TG), epitestosterone (ETG), nandrolone (NG), androsterone (AG), 5alpha-estran-3alpha-ol-17-one (5alpha-NG), 5beta-estran-3alpha-ol-17-one (5beta-NG), 17alpha-methyl-5alpha-androstane-3alpha,17beta-diol (5alpha-MTG), and 17alpha-methyl-5beta-androstane-3alpha,17beta-diol (5beta-MTG), the last four being new compounds synthesized with enzyme-assisted method in our laboratory. High proton affinity of the 4-ene-3-one system in the steroid structure favored the formation of protonated molecule [M + H]+ in positive ion mode mass spectrometry (MS), whereas the steroid glucuronides with lower proton affinities were detected mainly as ammonium adducts [M + NH4]+. The only ion produced in negative ion mode mass spectrometry was a very intense and stable deprotonated molecule [M - H]- . Positive ion ESI and APCI MS/MS spectra showed abundant and structure specific product ions [M + H - Glu]+, [M + H - Glu - H2O]+, and [M + H - Glu - 2H2O]+ of protonated molecules and corresponding ions of the ammonium adduct ions. The ratio of the relative abundances of these ions and the stability of the precursor ion provided distinction of 5alpha-NG and 5beta-NG isomers and TG and ETG isomers. Corresponding diagnostic ions were only minor peaks in negative ion MS/MS spectra. It was shown that positive ion ESI MS/MS is the most promising method for further development of LC-MS methods for anabolic steroid glucuronides.  相似文献   

3.
For the first time in the field of steroid residues in humans, demonstration of 19-norandrosterone (19-NA: 3alpha-hydroxy-5alpha-estran-17-one) and 19-noretiocholanolone (19-NE: 3alpha-hydroxy-5beta-estran-17-one) excretion in urine subsequent to boar consumption is reported. Three male volunteers agreed to consume 310 g of tissues from the edible parts (meat, liver, heart and kidney) of a boar. The three individuals delivered urine samples before and during 24 h after meal intake. After deconjugation of phase II metabolites, purification and specific derivatisation of target metabolites, the urinary extracts were analysed by mass spectrometry. Identification was carried out using measurements obtained by gas chromatography/high resolution mass spectrometry (GC/HRMS) (R = 7000) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) (positive electrospray ionisation (ESI+)). Quantification was realised using a quadrupole mass filter. 19-NA and 19-NE concentrations in urine reached 3.1 to 7.5 microg/L nearby 10 hours after boar tissue consumption. Levels returned to endogenous values 24 hours after. These two steroids are usually exploited to confirm the exogenous administration of 19-nortestosterone (19-NT: 17beta-hydroxyestr-4-en-3-one), especially in the antidoping field. We have thus proved that eating tissues of non-castrated male pork (in which 17beta-nandrolone is present) might induce some false accusations of the abuse of nandrolone in antidoping.  相似文献   

4.
Methenolone acetate (17β-acetoxy-1-methyl-5α-androst-1-en-3-one), a synthetic anabolic steroid, is frequently abused in human sports. It is preferred for its therapeutic efficiency and lower hepatic toxicity compared with its 17α-alkylated analogs. As with other anabolic steroids, methenolone acetate may be used to enhance performance in racehorses. Metabolic studies on methenolone acetate have been reported for humans, whereas little is known about its metabolic fate in horses. This paper describes the investigation of in vitro and in vivo metabolism of methenolone acetate in racehorses.Studies on the in vitro biotransformation of methenolone acetate with horse liver microsomes were carried out. Methenolone (M1, 1-methyl-5α-androst-1-en-17β-ol-3-one) and seven other metabolites (M2-M8) were detected in vitro. They were 1-methyl-5α-androst-1-ene-3,17-dione (M2), 1-methyl-5α-androst-1-en-6-ol-3,17-dione (M3) and two stereoisomers of 1-methylen-5α-androstan-2-ol-3,17-dione (M4 and M5), 1-methyl-5α-androst-1-en-16-ol-3,17-dione (M6) and monohydroxylated 1-methyl-5α-androst-1-en-17-ol-3-one (M7 and M8). After oral administration of Primobolan® (80 tablets × 5 mg of methenolone acetate each) to two thoroughbred geldings, the parent steroid ester was not detected in the post-administration urine samples. However, seven metabolites, namely M1, M6-M8, two stereoisomers of M7 (M9 and M10) and 1-methyl-5α-androst-1-en-17α-ol-3-one (M11), could be detected. The metabolic pathway for methenolone acetate is postulated. This study has shown that metabolite M1 could be targeted for controlling the abuse of methenolone acetate in horses.  相似文献   

5.
For almost two decades we have known that enzymatic hydrolysis of "normal" urine samples from the entire male horse using Escherichia coli (E. coli) followed by solvolysis (ethyl acetate:methanol:sulphuric acid) results in the detection of significant amounts of estr-4-ene-3,17-dione (19-norandrost-4-ene-3,17-dione) along with estr-4-en-17beta-ol-3-one (19-nortestosterone, nandrolone) in extracts of the hydrolysed urine and that both steroids are isolated from the solvolysis fraction. This solvolysis process is targeted at the steroid sulphates. Also we have shown that 19-norandrost-4-ene-3,17-dione and 19-nortestosterone are isolated from testicular tissue extracts. Subsequently, evidence was obtained that 19-nortestosterone detected in extracts of "normal" urine from male horses may not be derived from the 17beta-sulphate conjugate. However, following administration of 19-nortestosterone based proprietary anabolic steroids to all horses (males, females and castrates), the urinary 19-nortestosterone arising from the administration is excreted primarily as the 17beta-sulphate conjugate. Thus, if the 19-nortestosterone-17beta-sulphate conjugate arises only following administration this has interesting implications for drug surveillance programmes to control administration of 19-nortestosterone based anabolic preparations to male horses. These results have led us to consider that the precursors to 19-nortestosterone and 19-norandrost-4-ene-3,17-dione, present in the urine prior to the hydrolysis steps, have the same basic structure except for the functionality at the 17-position. We have used preparative high pressure liquid chromatography (LC) and LC fractionation to separate these precursors from the high amounts of oestrogenic sulphates present in "normal" urine from the entire male horse. Purified fractions have then been studied by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) to identify the precursors.  相似文献   

6.
Owing to the developments of analytical instruments and interfaces (e.g. coupling high-performance liquid chromatography to mass spectrometry), there has been increased interest in new reference materials, for example in doping analysis with steroid glucuronide conjugates. The synthesized reference material has to pass several characterization steps including the use of gas chromatography/mass spectrometry (GC/MS) for its structure confirmation. In the present study, the fragmentation and mass spectrometric behaviour of several steroid glucuronide conjugates of endogenous and anabolic steroids after derivatization to pertrimethylsilylated products and to methyl ester pertrimethylsilylated products were investigated using GC/MS ion trap and GC/MS quadrupole instruments. The mass spectra of the derivatives of androsterone glucuronide, d5-androsterone glucuronide, epiandrosterone glucuronide, etiocholanolone glucuronide, 11beta-hydroxy etiocholanolone glucuronide, 19-norandrosterone glucuronide, d4-19-norandrosterone glucuronide and 1alpha-methyl-5alpha-androstan-3alpha-ol-17-one glucuronide are presented and the origin of typical fragment ions of the glycosidic and steroidal moieties is proposed, based on different derivatization techniques including derivatization with d18-bistrimethylsilylacetamide, methyl ester and trimethylsilyl ester derivatization and selected reaction monitoring. Typical fragmentation patterns which are related to the steroid structure are discussed.  相似文献   

7.
The reaction of bicyclo[3.3.1]nonane-2,6-dione with diazomethane in situ does not lead to the homologous bicyclo[4.3.1]decane-2,7-dione, but mainly to tricyclo[4.4.0.02,9]decan-9-ol-5-one. The structure of the latter was confirmed by the proton NMR spectra measured with an addition of Eu(DPM)3, A mixture of tricyclo[4,4.0.02,9]decan-9-ol-5-one and bicyclo[4.3.1]decane-2,7-dione results when solutions of diazomethane are used. The reaction of bicyclo[3.3.1]nonane-2,6-dione monoethyleneacetal with diazomethane in situ yields predominantly bicyclo[4.3.1]decane-2,7-dione. Under the same conditions bicyclo[3.3.1]nonan-2-one gives with diazomethane in situ only bicyclo[4.3.1]decan-2-one.  相似文献   

8.
Fermentation of (+)-androsta-1,4-diene-3,17-dione ([structure: see text]) with Cephalosporium aphidicola for 8 days yielded oxidative and reductive metabolites, androst-4-ene-3,17-dione ([structure: see text]), 17beta-hydroxyandrosta-1,4-diene-3-one ([structure: see text]), 11alpha-hydroxyandrosta-1,4-diene-3,17-dione ([structure: see text]), 11alpha-hydroxyandrost-4-ene-3,17-dione ([structure: see text]), 11alpha,17beta-dihydroxyandrost-4-ene-3-one ([structure: see text]) and 11alpha,17beta-dihydroxyandrosta-1,4-diene-3-one ([structure: see text]). The fermentation of [structure: see text] with Fusarium lini also yielded metabolites [structure: see text]. The structures of these metabolites were elucidated on the basis of spectroscopic techniques.  相似文献   

9.
Calf hepatocyte cultures were developed for the predictive analysis of in vivo xenobiotic biotransformations. The goal of this work was to show the feasibility of a system based on calf primary hepatocyte cultures using radiolabelled molecules to study xenobiotic metabolism rather than to study exhaustively the metabolism of a particular steroid. 19-Nortestosterone was chosen as a model substrate because of its relatively well known metabolism in the bovine species. Incubation of a mixture of tritiated and non-tritiated 19-nortestosterone was investigated in cell culture in order to target the biosynthesized metabolites. After extraction and purification, some of the in vitro metabolite structures were elucidated by GC-MS and compared with the main urinary metabolites detected in vivo after intramuscular injection of 19-nortestosterone into a calf. 19-Norepitestosterone, the main in vivo metabolite, was identified in vitro. However, the main in vitro metabolites were mostly in an oxidized form (4-estrene-3,17-dione, hydroxy-4-estrene-3,17-dione).  相似文献   

10.
The steroid glucuronide conjugates of 16,16,17-d(3)-testosterone, epitestosterone, nandrolone (19-nortestosterone), 16,16,17-d(3)-nortestosterone, methyltestosterone, metenolone, mesterolone, 5alpha-androstane-3alpha,17beta-diol, 2,2,3,4,4-d(5)-5alpha-androstane-3alpha,17beta-diol, 19-nor-5alpha-androstane-3alpha,17beta-diol, 2,2,4,4-d(4)-19-nor-5alpha-androstane-3alpha,17beta-diol and 1alpha-methyl-5alpha-androstane-3alpha/beta,17beta-diol were synthesized by means of the Koenigs-Knorr reaction. Selective 3- or 17-O-conjugation of bis-hydroxylated steroids was performed either by glucuronidation of the corresponding steroid ketole and subsequent reduction of the keto group or via a four-step synthesis starting from a mono-hydroxylated steroid including (a) protection of the hydroxy group, (b) reduction of the keto group, (c) conjugation reaction and (d) removal of protecting groups. The mass spectra and fragmentation patterns of all glucuronide conjugates were compared with those of the commercially available testosterone glucuronide and their characterization was performed by gas chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy. For mass spectrometry the substances were derivatized to methyl esters followed by trimethylsilylation of hydroxy groups and to pertrimethylsilylated products using labelled and unlabelled trimethylsilylating agents. The resulting electron ionization mass spectra obtained by GC/MS quadrupole and ion trap instruments, full scan and selected reaction monitoring experiments are discussed, common and individual fragment ions are described and their origins are proposed.  相似文献   

11.
For over a decade there has been an intensive debate on the possible natural origin of boldenone (androst-1,4-diene-17beta-ol-3-one, 17beta-boldenone) in calf urine and several alternative markers to discriminate between endogenously formed boldenone and exogenously administered boldenone have been suggested. The currently approved method for proving illegal administration of beta-boldenone(ester) is the detection of beta-boldenone conjugates. In the presented method the sulphate, glucuronide and free fractions are separated from each other during cleanup on a SAX column to be able to determine the conjugated status of the boldenone metabolites. The sulphate and glucuronide fractions are submitted to hydrolysis and all three fractions are further cleaned up on a combination of C18/NH2 solid-phase extraction (SPE) columns. Chromatographic separation of the boldenone metabolites was achieved with a Waters Acquity UPLC instrument using a Sapphire C18 (1.7 microm; 2x50 mm) column within 5 min. Detection of the analytes was achieved by electrospray ionisation tandem mass spectrometry. The decision limits of this method, validated according to Commission Decision 2002/657/EC, were 0.08 ng mL(-1) for androsta-1,4-diene-3,17-dione, 0.13 ng mL(-1) for androst-4-ene-3,17-dione, 0.11 ng mL(-1) for 17alpha-boldenone, 0.07 ng mL(-1) for 17beta-boldenone, 0.24 ng mL(-1) for 5beta-androst-1-en-17beta-ol-3-one and 0.58 ng mL(-1) for 6beta-hydroxy-17beta-boldenone. Because of the fractionation approach used in this method there is no need for conjugated reference standards which often are not available. The disadvantage of needing three analytical runs to determine the conjugated status of each of the metabolites was overcome by using fast chromatography.  相似文献   

12.
[2 beta,7,7,16 beta-2H4]16 alpha,19-Dihydroxyandrost-4-ene-3,17-dione (14) and [7,7,16 beta-2H3]3 beta,16 alpha,19-trihydroxyandrost-5-en-17-one (16), with high isotopic purity, respectively, were synthesized from unlabeled 3 beta-(tert-butyldimethylsiloxy)-androst-5-ene-17 beta-yl acetate (1). The deuterium introduction at C-7 was carried out by reductive deoxygenation of the 7-keto compound 3 with dichloroaluminum deuteride and that at C-2 beta and/or C-16 beta by controlled alkaline hydrolysis of 16-bromo-17-ketone 11 or 12 with NaOD in D2O and pyridine. [7,7-2H2]3 beta-Hydroxyandrost-5-en-17-one (6), obtained from compound 1 by a five-step sequence, was converted to compound 14 or 16 by an eight-step or seven-step sequence, respectively. The labeled steroids 14 and 16 are useful as internal standards for gas chromatography-mass spectrometry analysis of the endogenous levels.  相似文献   

13.
An immunoaffinity precolumn (immuno precolumn) packed with Sepharose-immobilized polyclonal antibodies against the anabolic hormone 17 beta-19-nortestosterone (beta-19-NT) was used for the selective on-line pretreatment of raw extracts of urine, bile and tissue samples by high-performance liquid chromatography. Using UV detection (247 nm), beta-19-NT and its metabolite 17 alpha-19-nortestosterone (alpha-19-NT) can be determined in biological samples with a detection limit of 0.05 microgram/kg. Owing to the high clean-up efficiency of the immuno precolumn and the large sample volumes used, confirmation by gas chromatography-mass spectrometry is possible at this level. In urine samples from a calf treated with 19-nortestosterone 17 beta-laurate, the maximum concentrations of beta-19-NT (1.3 micrograms/l) and alpha-19-NT (3.1 micrograms/l) were found seven days after intramuscular administration. In a bile sample from this calf only alpha-19-NT (55 microgram/l) was detected. In meat samples from three treated calves, the concentration of beta-19-NT varied from 0.1 to 1.6 micrograms/kg and no alpha-19-NT could be detected. In liver samples from these calves, the concentrations of beta-19-NT and alpha-19-NT were less than 0.05-0.1 and 0.5-0.9 micrograms/kg, respectively. In the corresponding kidney samples, the concentrations of beta-19-NT and alpha-19-NT were 0.4-0.5 and 0.5-1.6 micrograms/kg, respectively. The application of the same immuno precolumn to the determination of 17 beta- and 17 alpha-trenbolone, two structurally related steroids, is also demonstrated.  相似文献   

14.
Michael reaction of 1,7-pctadien-3-one with 2-methylcyclopentane-1,3-dione, followed by intramolecular aldol condensation promoted by L-amino acids produced the optically active (+)-4-(3-butenyl)-7a-methyl-5,6,7,7a-tetrahydroindane-1,5-dione in high chemical and optical yields. The PdCl2-catalyzed oxidation of the terminal double bond gave the methyl ketone, which had 76% optical purity and was made 100% optically pure by recrystallization. Then aldol condensation afforded the tricyclic ketone, which was alkylated with 3-butenyl iodide to afford (?)-3β-t-butoxy-2,3,3a,4,5,7,8,9,9aβ,9bα-decahydro-6-(3-butenyl)-3aβ-methyl-1H-benz[e]inden-7-one. The synthesis of this compound means the total synthesis of (+)-19-nortestosterone.  相似文献   

15.
Mesterolone (1α-methyl-5α-androstan-17β-ol-3-one) is a synthetic anabolic androgenic steroid (AAS) with reported abuses in human sports. As for other AAS, mesterolone is also a potential doping agent in equine sports. Metabolic studies on mesterolone have been reported for humans, whereas little is known about its metabolic fate in horses. This paper describes the studies of both the in vitro and in vivo metabolism of mesterolone in racehorses with an objective to identify the most appropriate target metabolites for detecting mesterolone administration.In vitro biotransformation studies of mesterolone were performed by incubating the steroid with horse liver microsomes. Metabolites in the incubation mixture were isolated by liquid-liquid extraction and analysed by gas chromatography-mass spectrometry (GC-MS) after acylation or silylation. Five metabolites (M1-M5) were detected. They were 1α-methyl-5α-androstan-3α-ol-17-one (M1), 1α-methyl-5α-androstan-3β-ol-17-one (M2), 1α-methyl-5α-androstane-3α,17β-diol (M3), 1α-methyl-5α-androstane-3β,17β-diol (M4), and 1α-methyl-5α-androstane-3,17-dione (M5). Of these in vitro metabolites, M1, M3, M4 and M5 were confirmed using authentic reference standards. M2 was tentatively identified by mass spectral comparison to M1.For the in vivo metabolic studies, Proviron® (20 tablets × 25 mg of mesterolone) was administered orally to two thoroughbred geldings. Pre- and post-administration urine samples were collected for analysis. Free and conjugated metabolites were isolated using solid-phase extraction and analysed by GC-MS as described for the in vitro studies. The results revealed that mesterolone was extensively metabolised and the parent drug was not detected in urine. Three metabolites detected in the in vitro studies, namely M1, M2 and M4, were also detected in post-administration urine samples. In addition, two stereoisomers each of 1α-methyl-5α-androstane-3,17α-diol (M6 and M7) and 1α-methyl-5α-androstane-3,16-diol-17-one (M8 and M9), and an 18-hydroxylated metabolite 1α-methyl-5α-androstane-3,18-diol-17-one (M10) were also detected. The metabolic pathway for mesterolone is postulated. These studies have shown that metabolites M8, M9 and M10 could be used as potential screening targets for controlling the misuse of mesterolone in horses.  相似文献   

16.
Clostebol acetate (4-chlorotestosterone acetate) is a synthetic anabolic steroid which may be used to enhance performance in racehorses. Studies on the in vitro biotransformation of clostebol acetate with horse liver microsomes were carried out. Six metabolites (C1 – C6) were detected. They were 4-chlorotestosterone (C1), 4-chloroandrost-4-en-3-ol-17-one (C2), 4-chloroandrost-4-ene-3,17-diol (C3), 4-chloroandrost-4-ene-3,17-dione (C4), 4-chloroandrost-4-en-6-ol-3,17-dione (C5) and 6-hydroxy-4-chlorotestosterone (C6). Clostebol acetate (350 mg) was administered orally to 2 thoroughbred geldings. The parent drug was not detected in post-administration urine, and only three metabolites C1, C3, and 4-chloroandrostane-3,17-diol (C7) were observed. The metabolic pathway for clostebol acetate is postulated. These studies have shown that metabolites C3 and C7 could be used as potential screening targets for controlling the abuse or misuse of clostebol acetate in racehorses.  相似文献   

17.
In recent years products containing 6alpha-methylandrost-4-ene-3,17-dione have appeared on the sport supplement market. Scientific studies have proven aromatase inhibition and anabolic and mild androgenic properties; however, no preparation has been approved for medical use up to now. In sports 6alpha-methylandrost-4-ene-3,17-dione has to be classified as a prohibited substance according to the regulations of the World Anti-Doping Agency (WADA). For the detection of its misuse the metabolism was studied following the administration of two preparations obtained from the Internet (Formadrol and Methyl-1-Pro). Several metabolites as well as the parent compounds were synthesized and the structures of 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, 6alpha-methylandrost-4-ene-3,17-dione, and 5beta-dihydromedroxyprogesterone were confirmed by nuclear magnetic resonance (NMR) spectroscopy. The main metabolite, 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, was found to be excreted as glucuronide and was still detectable in microg/mL amounts until urine collection was terminated (after 25 h). Additionally, samples from routine human sports doping control had already tested positive for the presence of metabolites of 6alpha-methylandrost-4-ene-3,17-dione. Screening analysis can be easily performed by the existing screening procedure for anabolic steroids using 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one as target substance (limit of detection <10 ng/mL). Its discrimination from the closely eluting drostanolone metabolite, 3alpha-hydroxy-2alpha-methyl-5alpha-androstan-17-one, is possible as the mono-TMS derivative.  相似文献   

18.
The metabolism and excretion of androst-4-ene-3,6,17-trione after administration of the 'nutritional' supplement 6-OXO was investigated by gas chromatography-mass spectrometry (GC-MS) in full-scan mode. The parent drug androst-4-ene-3,6,17-trione and androst-4-ene-6alpha,17beta-diol-3-one and androst-4-ene-6alpha-ol-3,17-dione were detected in the post-administration urine samples. Because androst-4-ene-3,6,17-trione is an anabolic steroid and an aromatase inhibitor, this substance is regarded as a doping agent. Hence, a selective and sensitive GC-MS method in selected ion monitoring mode for the detection of the TMS-enol-TMS-ether derivatives of these substances was developed and validated for doping control purposes. The limit of detection (LOD) of the investigated compounds ranged from 5 to 10 ng/mL. Using this method, the detection time for androst-4-ene-3,6,17-trione and androst-4-ene-6alpha,17beta-diol-3-one was 24 h, while androst-4-ene-6alpha-ol-3,17-dione could be detected up to 37 h after administration of the dose recommended by the manufacturer.  相似文献   

19.
The molecular structures of two byproducts 1,1'-diphenyl-3',4'-dihydrodispiro[indole-2,2'-furan-5',2'-indole]-3,3'(1H, 1'H)-dione (3) and 1,5'-diphenyl-4',5'-dihydro-3'H-spiro[indole-2,2'-pyrano[3,2-b]indol]-3(1H)-one (4), which accompanied the rearrangement of 3-hydroxy-3-methyl-1-phenylquinoline-2,4(1H,3H)-dione (1) to 2-hydroxy-2-methyl-1-phenyl-1,2-dihydro-3H-indol-3-one (2), have been elucidated by NMR, MS, and X-ray diffraction.  相似文献   

20.
A new reaction of 4-arylidene-3-methylisoxazol-5(4H)-one or 4-arylidene-2-phenyloxazol-5(4H)-one with 2,6-diaminopyrimidin-4(3H)-one is described and a number of new pyrido[2,3-d]pyrimidine-4,7-dione derivatives are synthesized. This protocol has the advantages of good yields, broad substrate scope and simple work-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号