首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface chemistry plays an important role in determining flux through porous media such as in the environment. In this paper diffusive flux of nanoparticles through alkylsilane modified porous alumina is measured as a model for understanding transport in porous media of differing surface chemistries. Experiments are performed as a function of particle size, pore diameter, attached hydrocarbon chain length and chain terminus, and solvent. Particle fluxes are monitored by the change in absorbance of the solution in the receiving side of a diffusion cell. In general, flux increases when the membranes are modified with alkylsilanes compared to untreated membranes, which is attributed to the hydrophobic nature of the porous membranes and differences in wettability. We find that flux decreases, in both hexane and aqueous solutions, when the hydrocarbon chain lining the interior pore wall increases in length. The rate and selectivity of transport across these membranes is related to the partition coefficient (K(p)) and the diffusion coefficient (D) of the permeating species. By conducting experiments as a function of initial particle concentration, we find that K(p)D increases with increasing particle size, is greater in alkylsilane-modified pores, and larger in hexane solution than water. The impact of the alkylsilane terminus (-CH(3), -Br, -NH(2), -COOH) on permeation in water is also examined. In water, the highest K(p)D is observed when the membranes are modified with carboxylic acid terminated silanes and lowest with amine terminated silanes as a result of electrostatic effects during translocation.  相似文献   

2.
We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.  相似文献   

3.
4.
Electrostatic and hydrophobic forces are generally recognized as important in bacterial adhesion. Current continuum models for these forces often wrongly predict measurements of bacterial adhesion forces. The hypothesis tested here is that even qualitative guides to bacterial adhesion often require more than continuum information about hydrophobic forces; they require knowledge about molecular details of the bacteria and substrate surface. In this study, four different strains of bacteria were adsorbed to silica surfaces hydrophobized with alkylsilanes. The thickness of the lipopolysaccharide layers varied on the different bacteria, and the lengths of the alkylsilane molecules were varied from experiment to experiment. Bacterial adhesion was assessed using column experiments and atomic force microscopy (AFM) experiments. Results show that hydrophobized surfaces have higher bacterial sticking coefficients and stronger adhesion forces than bare silica surfaces, as expected. However, adhesion decreased as the solution Debye length became longer than the alkylsilane, perhaps since the silane molecules could not "reach" the bacterial surface. Similarly, those bacteria with a long o-antigen layer had decreased adhesion, perhaps since the silane molecules could not reach surface-bound proteins on the bacteria. This study reveals that macroscopic measurements such as contact angle are not able to fully describe bacterial adhesion; rather, additional details such as the molecular length are required to predict adhesion.  相似文献   

5.
The effect of xenon difluoride (XeF2) vapors on the surface properties of the polymer films irradiated by heavy ions and of the nucleopore nanofilters produced from these films is studied. The procedure for modifying nucleopore membranes made of poly(ethylene terephthalate) and polyimide in XeF2 vapors is developed. The hydrophilicity, electrosurface properties, and selectivity of modified membranes are investigated. It is shown that the water contact angle on the membrane surface decreases as a result of modification, and the extent of its change depends on the duration and temperature of membrane treatment. Electrokinetic measurements did not reveal any changes in the surface charge during the modification of the membranes prepared from poly(ethylene terephthalate), but their ion selectivity increased twofold. It is shown that the hydrodynamic diameter of the pores of modified membranes reversibly decreases with an increase in transmembrane pressure. The dislosed effects are explained by the presence of an elastoplastic gel-layer on the surfaces of the membrane and its pores. The gel-layer accumulates considerable surface and bulk charges and is characterized by the high hydraulic resistance hindering the convective ion transport.  相似文献   

6.
Membrane-bioreactor processes have increased considerably in recent years. However, the natural disadvantages of common membrane materials, such as hydrophobic surface, cause membrane fouling and cumber further extensive applications. In this work, hydrophilic surface modification of polypropylene microporous membranes was carried out by the sequential photoinduced graft polymerization of d-gluconamidoethyl methacrylate (GAMA) to meet the requirements of wastewater treatment and water reclamation applications. The grafting density and grafting chain length were controlled independently in the first and second step, respectively. Attenuated total reflection–Fourier transform infrared spectroscopy (FT-IR/ATR) and X-ray photoelectron spectroscopy (XPS) were employed to confirm the surface modification on the membranes. Water contact angle was measured by the sessile drop method. Results of FT-IR/ATR and XPS clearly indicated that GAMA was grafted on the membrane surface. It was found that the grafting chain length increased reasonably with the increase of the UV irradiation time. Water contact angle on the modified membrane decreased with the increase of the grafting chain length, and showed a minimum value of 43.2°, approximately 51.8° lower than that of the unmodified membrane. The pure water fluxes for the modified membranes increased systematically with the increase of the grafting chain length. The effect of the grafting chain length on the antifouling characteristics in a submerged membrane-bioreactor for synthetic wastewater treatment was investigated. After continuous operation in the submerged membrane-bioreactor for about 70 h, reduction from pure water flux was 90.7% for the virgin PPHFMM, and ranged from 80.8 to 87.2% for the modified membranes, increasing with increasing chain length. The flux of the virgin PPHFMM membrane after fouling and subsequent washing was 31.5% of the pure water flux through the unfouled membrane; for the modified membranes this ranged from 27.8 to 16.3%, decreasing with increasing chain length. These results demonstrated that the antifouling characteristics for the glucopolymer-modified membranes were improved with an increase in GAMA chain length.  相似文献   

7.
The formation of mixed monolayers of hydridospherosilsesquioxane clusters (H(8)Si(8)O(12)) and alkylsilanes (H(2n+1)C(n)SiH(3)) on Au has been investigated using X-ray photoelectron and reflection-absorption infrared spectroscopies and scanning tunneling microscopy. All of the techniques indicate the displacement of the majority of the siloxane clusters from the surface in favor of the alkylsilane.  相似文献   

8.
新型两亲性含钛β沸石的制备与表征   总被引:3,自引:0,他引:3  
周炜  须沁华  董家騄  淳远 《化学学报》2003,61(10):1533-1536
将Ti-β沸石经过正十八烷基三氯硅烷改性制得两亲性含钛β沸石,并通过 XRD,FT-IR,UV-vis和N_2吸附-脱附等手段对其进行了表征。同改性前样品相比, 制备出的两亲性含钛β沸石保持了原来的晶体结构,其BET比表面积和BJH孔容均稍 有下降。FT-IR和UV-vis结果说明该沸石骨架在存在四配位钛,从而有可能成为催 化烯烃环氧化反应的活性中心。由于外表面阔别分覆盖有憎水性的硅烷基团而其它 部分吃不开现亲水性,该两亲性含钛沸石分布于水/油两相界面处,因此该催化剂 可以应用于不添加共溶剂 的相界面催化反应。  相似文献   

9.
The preparation of water repellent textiles by coating with different modified silica sols has been investigated. For this, pure and with 3-glycidoxypropyl triethoxysilane co-condensed silica sols were modified by three types of additives: alkyltrialkoxysilanes, polysiloxane derivatives and a fluorine containing silane. Hydrophobic properties of the coated fabrics of polyamide and of polyester mixed with cotton were determined using contact angle measurements. The hydrophobicity increases with increasing concentration of the alkylsilane additive in the silica sol and the length of the alkyl chain but with high additive concentrations plateau values in hydrophobicity were reached. Analogously textile coatings with high hydrophobicity were gained using hydrophobic polysiloxane or fluorine containing silicon compounds. The comparison of the different variants reveals that high wash-out stabilities were reached only by silica sols containing fluorine compoundsand hexadecylsilane additives. Therefore long-chain alkyltrialkoxysilane compounds could be used as substitutes for fluorine compounds for the surface modification of textiles in some practical applications.  相似文献   

10.
Nanoporous alumina membranes rendered hydrophobic by surface modification via covalent attachment of hydrocarbon or fluorocarbon chains conduct electricity via surface even when the pores are not filled with electrolyte. The resistance is many orders of magnitude higher than for electrolyte-filled membranes and does not depend on the electrolyte concentration or pH, but it does depend on the type of hydrophobic monolayer and its density. The corresponding surface resistance varies from greater than 10(18) Omega per square to less than 3 x 10(9) Omega per square. When the hydrophobic monolayer contains a small proportion of photoactive spiropyran that is insufficient to switch the surface to hydrophilic after spiropyran photoisomerization to the merocyanine form, the membrane resistance also becomes light-dependent with a reversible increase of surface resistance by as much as 15%. Surface conduction is ascribed to hydration and ionization of the alumina surface hydroxyls and the ionizable groups of the hydrophobic surface modifiers.  相似文献   

11.
Variable-temperature hyperpolarized (HP) 129Xe NMR spectroscopy has been employed to characterize surface properties of mesoporous MCM-41 modified by silylation treatment. The characteristic chemical shifts responsible for Xe-surface interactions exhibit strong correlations with both the surface coverage and chain length of the grafted alkylsilanes. Consequently, the deshielding medium contribution due to individual alkyl ligand can be deduced based on the group contribution analysis revealing the potential use of HP 129Xe NMR for probing the surface properties of organic-functionalized porous materials.  相似文献   

12.
The zeta potential is an important and reliable indicator of the surface charge of membranes, and knowledge of it is essential for the design and operation of membrane processes. The zeta potential cannot be measured directly, but must be deduced from experiments by means of a model. The possibility of determining the zeta potential of porous membranes from measurements of the electrolyte conductivity inside pores (lambda(pore)) is investigated in the case of a ceramic microfiltration membrane. To this end, experimental measurements of the electrical resistance in pores are performed with the membrane filled with KCl solutions of various pHs and concentrations. lambda(pore) is deduced from these experiments. The farther the pH is from the isoelectric point and/or the lower the salt concentration is, the higher the ratio of the electrolyte conductivity inside pores to the bulk conductivity is, due to a more important contribution of the surface conduction. Zeta potentials are calculated from lambda(pore) values by means of a space charge model and compared to those calculated from streaming potential measurements. It is found that the isoelectric points are very close and that zeta potential values for both methods are in quite good agreement. The differences observed in zeta potentials could be due to the fact that the space charge model does not consider the surface conductivity in the inner part of the double layer. Measurements of the electrolyte conductivity within the membrane pores are proved to be a well-adapted procedure for the determination of the zeta potential in situations where the contribution of the surface conduction is significant, i.e., for small and charged pores. Copyright 2001 Academic Press.  相似文献   

13.
Macrocyclic oligocholates were found in a previous work (Cho, H.; Widanapathirana, L.; Zhao, Y. J. Am. Chem. Soc.2011, 133, 141-147) to stack on top of one another in lipid membranes to form nanopores. Pore formation was driven by a strong tendency of the water molecules in the interior of the amphiphilic macrocycles to aggregate in a nonpolar environment. In this work, cholate oligomers terminated with guanidinium and carboxylate groups were found to cause efflux of hydrophilic molecules such as glucose, maltotriose, and carboxyfluorescein (CF) from POPC/POPG liposomes. The cholate trimer outperformed other oligomers in the transport. Lipid-mixing assays and dynamic light scattering ruled out fusion as the cause of leakage. The strong dependence on chain length argues against random intermolecular aggregates as the active transporters. The efflux of glucose triggered by these compounds increased significantly when the bilayers contained 30 mol% cholesterol. Hill analysis suggested that the active transporter consisted of four molecules. The oligocholates were proposed to fold into "noncovalent macrocycles" by the guanidinium-carboxylate salt bridge and stack on top of one another to form similar transmembrane pores as their covalent counterparts.  相似文献   

14.
Aminosilane-treated molecular layers on glass surfaces are frequently used as functional platforms for biosensor preparation. All the amino groups present on the surface are not available in reactive forms, because surface amino groups interact with remaining unreacted surface silanol groups. Such nonspecific interactions might reduce the efficiency of chemical immobilization of biomolecules such as DNA, enzymes, antibodies, etc., in biosensor fabrication. To improve immobilization efficiency we have used additional surface silanization with alkylsilane (capping) to convert the remaining silanol groups into Si–O–Si linkages, thereby liberating the amino groups from nonspecific interaction with the silanol groups. We prepared different types of capped amine surface and evaluated the effect of capping on immobilization efficiency by investigating the fluorescence intensity of Cy3-NHS (N-hydroxysuccinimide) dye that reacted with amino groups. The results indicate that most of the capped amine surfaces resulted in enhanced efficiency of immobilization of Cy3-NHS compared with the untreated control amine surface. We found a trend that trialkoxysilanes had greater capping effects on immobilization efficiency than monoalkoxysilanes. It was also found that the aliphatic chain of alkylsilane, which does not participate in the capping of the silanol, had an important function in enhancing immobilization efficiency. These results would be useful for preparation of an amine-modified surface platform, with enhanced immobilization efficiency, which is essential for developing many kinds of biosensors on a silica matrix. Enhancement of amine funtionality by capping with alkylsilane  相似文献   

15.
An electrical impedance spectroscopy (EIS) method for measuring changes in the electrical properties of synthetic membranes is investigated as a possible way of monitoring, in situ, the separation performance of these membranes including membrane fouling. Unlike other EIS methods, which require traditional electrodes in the feed and permeate solutions, alternating current is injected directly into the membrane via external electrical contacts with the edges of the membrane. A metal layer sputtered onto the surface of the membrane can be used to enhance its conduction properties. The impedance models of these systems is shown to be sensitive to membrane surface properties, including porosity, as well as electrical properties of solutions and the interfacial regions between the membrane surfaces and the solutions. The investigation indicates that fouling along the surface of the membrane might be more readily detectable than inside the pores.  相似文献   

16.
Studies of membrane wettability in the membrane distillation process were performed with the application of hydrophobic capillary membranes made of polypropylene. Three kinds of Accurel PP membranes (Membrana GmbH, Germany) differing in the diameter of capillaries and pores as well as in the wall thickness were used. It was confirmed that membranes with lower wall thickness and larger pore size provide higher yields of the process. The studies demonstrated that the pores of used membranes located close to the external surface of capillaries are several times larger than those located inside the membrane wall. Based on air permeability measurements it was found that external surface of the membranes with such large pores was completely wetted by water after 50–80 h of membrane distillation. However, the pores located inside the wall with the diameter below 1 μm were not wetted and electrical conductivity of the obtained distillate was maintained at the level of 3–6 μS cm−1.  相似文献   

17.
Based on the similarity of subgraphs in the molecular graphs of a homological series of SiH4-SiC8H20 alkylsilanes a 22-constant additive scheme is obtained for the calculation of their physicochemical properties. By the example of SiH4-SiC8H20 alkylsilanes it is shown that for each alkylsilane molecule the sum of numbers of simple and complex heterochains equals a triangular number. A least squares method is applied to determine the numerical values of the parameters of the scheme for the calculation of Δ f H gas,298 K 0 for alkylsilanes (SiC n H2n+4).  相似文献   

18.
The role of membrane surface substances on the generation of transmembrane potential was studied. Several functional groups such as amino, epoxy, and carboxyl groups were covalently introduced to a bromoacetyl cellulose membrane. These functional groups caused a marked change in the surface potential of the membrane. The transmembrane potential shift caused by the chemical modification was attributed to the charge of the functional groups. Several proteins were covalently immobilized to the modified membrane. The modification process was followed through the transmembrane potential. The transmembrane potential of the protein-binding membranes showed that lysozyme and egg albumin at the membrane surface produced a positive and a negative charge, respectively. It was concluded that attachment of protein to the surface of the membrane affects a change in the charge density of the membrane surface with a resulting change in transmembrane potential.  相似文献   

19.
The interaction of water with self-assembled alkylsilane monolayers on mica substrates has been studied using an atomic force microscope operated in contact, noncontact, and electrical polarization modes. Complete monolayer films were found to be effective in blocking water adsorption. On partially covered surfaces water was found to produce large changes in the conductivity and surface potential of the exposed mica regions. It was also found that water could penetrate films near defects and at island edges.  相似文献   

20.
Supported liquid membranes (SLMs), prepared by immobilising the room temperature ionic liquids (RTILs) [CnMIM]PF6 (n = 4 and 8) and [C10MIM]BF4 in a polyvinylidene (PVDF) supporting membrane, were prepared and characterised by electrochemical impedance spectroscopy (IS). This non-invasive technique allows the determination of the electrical properties of a given sample, such as the electrical resistance and capacitance under working conditions, i.e., in contact with saline solutions.

Bearing in mind that the water content of the ionic liquids can drastically affect their physicochemical properties, impedance measurements of the SLMs, placed between two aqueous solutions, were carried out at regular time intervals, in order to assess the impact of the presence of water inside the RTILs on the electrical properties of supported ionic liquid membranes. The electrical resistance of the SLMs and its variation during long-term operation was also used as a physical parameter to identify the presence/loss of ionic liquid from the pores of the support. Additionally, the comparison of the IS results obtained for the SLMs with those obtained for the supporting membrane was carried out, in order to gather information about electrical changes associated with the presence of ionic liquid in the pores.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号