首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
The in-plane dynamic crushing of two dimensional honeycombs with both regular hexagonal and irregular arrangements was investigated using detailed finite element models. The energy absorption of honeycombs made of a linear elastic-perfectly plastic material with constant and functionally graded density were estimated up to large crushing strains. Our numerical simulations showed three distinct crushing modes for honeycombs with a constant relative density: quasi-static, transition and dynamic. Moreover, irregular cellular structures showed to have energy absorption similar to their counterpart regular honeycombs of same relative density and mass. To study the dynamic crushing of functionally graded cellular structures, a density gradient in the direction of crushing was introduced in the computational models by a gradual change of the cell wall thickness. Decreasing the relative density in the direction of crushing was shown to enhance the energy absorption of honeycombs at early stages of crushing. The study provides new insight into the behavior of engineered and biological cellular materials, and could be used to develop novel energy absorbent structures.  相似文献   

2.
具有负泊松比效应蜂窝材料的面内冲击动力学性能   总被引:1,自引:0,他引:1  
张新春  刘颖  李娜 《爆炸与冲击》2012,32(5):475-482
基于显式动力有限元ANSYS/LS-DYNA,研究了面内冲击作用下具有负泊松比效应蜂窝材料的 动态冲击性能。在保证胞元壁长和壁厚不变的前提下,通过改变胞元扩张角,建立了内凹六边形蜂窝模型。 具体讨论了胞元扩张角和冲击速度对蜂窝材料面内冲击变形和能量吸收能力的影响。研究发现,在冲击载荷 作用下,内凹蜂窝材料的面内冲击性能依赖于胞元扩张角。胞元扩张角的绝对值越大,冲击端的平台应力越 高。随着冲击速度的提高,蜂窝材料表现出更强的能量吸收能力。  相似文献   

3.
关于蜂窝芯体面外等效剪切模量的讨论   总被引:2,自引:0,他引:2  
对于六边形蜂窝芯体,其面内等效参数具有确定的解析式,便于应用;相比之下,对于面外等效剪切模量,现有工作只能给出其上下限,由于没有确定的取值,给工程计算带来了困扰。为克服这一矛盾,本文通过Y型蜂窝胞元,针对薄面板的情况,重新分析了芯材的面外等效剪切模量。针对直壁板与斜壁板厚度为1:1和2:1的情况,给出了近似的弹性力学解答,并由此确定出面外等效剪切模量的上限。本方法所确定的剪切模量的上限与文献给出的剪切模量的下限是相同的,从而使该模量也具有确定的解析表达式,方便了数值计算和分析。试验数据和有限元数值分析均验证了本文结论的正确性。  相似文献   

4.
采用ANSYS/LS-DYNA有限元研究了具有不同胞孔构型和排列方式的金属蜂窝材料在面内冲击荷载下的力学性能。在蜂窝的相对密度和冲击速度保持恒定的情况下,比较了它们的变形模式、动态承载力和能量吸收性能。结果表明,不同的胞孔构型导致在蜂窝压垮过程中胞壁的受力状态不同,从而影响蜂窝的宏观力学性能。根据胞壁的应力状态,可将蜂窝分为膜力主导蜂窝和弯曲主导蜂窝2大类。研究结果显示,蜂窝吸收的能量绝大部分转化为变形所需的内能,并且膜力主导蜂窝的内能占总能量的百分比更大。胞壁的屈曲导致膜力主导蜂窝的应力应变曲线呈现较大的波动。膜力主导蜂窝在变形过程中其胞壁会耗散更多的内能,从而比弯曲主导蜂窝具有更高的动态承载力和能量吸收能力。  相似文献   

5.
因胞壁缺失引起的应力集中现象是蜂窝结构在增材制造过程中亟待解决的问题,通过将胞壁缺失所致的缺陷等效成椭圆,基于复变函数方法得到了预测拉伸应力的解析公式和预测弯矩应力的分析方法,进而得到八边形蜂窝结构在双向荷载条件下缺失单行和多行胞壁产生的应力组合值。与数值模拟结果的对比分析验证了所提理论解析公式的有效性;同时得出距离缺陷最近胞壁上的拉伸应力解析解与数值解吻合良好,弯矩应力数值解与胞壁上的应力梯度呈明显的线性关系。与规则六边形蜂窝在多行缺陷条件下的应力集中程度进行对比,得出八边形蜂窝结构在荷载系数 和 时应力集中程度小于规则六边形蜂窝结构,从而为蜂窝结构增材制造设计提供理论指导。  相似文献   

6.
铝蜂窝的动态力学性能及影响因素   总被引:1,自引:0,他引:1  
采用显式动力有限元方法研究了具有不同胞元结构的六角形铝蜂窝在冲击荷载下的力学性能,讨 论了铝蜂窝的变形模式和动态承载力以及影响因素。通过改变胞壁夹角得到5种不同的胞元结构,计算采用 了3种冲击速度。结果表明,在准静态变形模式下,胞元的几何因素对铝蜂窝的承载力起主导作用;一旦蜂窝 的变形呈现动态模式后,惯性效应显著,对蜂窝承载力起决定作用,胞元几何因素的影响不再明显;在过渡模 式下,惯性效应与几何因素共同主导蜂窝的动态承载力,并且冲击速度越高,惯性效应的影响越大。  相似文献   

7.
梯度蜂窝面外动态压缩力学行为与吸能特性研究   总被引:1,自引:0,他引:1  
蜂窝材料具有优异的抗冲击吸能特性。为进一步提高蜂窝材料的比吸能与压缩力效率,提出了一种几何参数或材料参数沿厚度方向梯度渐变的蜂窝材料模型,并针对六边形蜂窝构型研究了胞元壁厚和屈服强度梯度变化的蜂窝材料在面外动态压缩载荷下的力学行为与吸能特性。研究结果表明,通过调控梯度变化的指数,胞元壁厚或母体材料屈服强度的梯度设计均可有效降低初始峰值应力,并使蜂窝材料的比吸能和压缩力效率同时增大。研究结果可为蜂窝材料的防撞性优化设计提供新的思路。  相似文献   

8.
胞元微拓扑结构对蜂窝材料面内冲击性能的影响   总被引:1,自引:0,他引:1  
刘颖  张新春 《爆炸与冲击》2008,28(6):494-502
研究了面内冲击载荷作用下胞元微拓扑结构对蜂窝材料动态冲击性能的影响。首先,在胞元边长、厚度一致的条件下,讨论了不同形状胞元、以及胞元形状相同但排列方式不同的蜂窝材料的动态冲击性能,并给出了试件及其微结构的动态演化过程。在此基础上,讨论了胞元微观排列方式对蜂窝材料的能量吸收能力的影响。计算结果表明,除了胞元基本结构参数(边长、壁厚等),胞元形状及排布方式也是影响蜂窝材料动态性能的重要因素。由于三角形单胞的稳定性,三角形填充蜂窝材料与四边形填充蜂窝材料相比,表现出更强的能量吸收能力。而交错排布则对应着更加均匀的变形和稳定的平台区。同时,局部拓扑结构的变化,交错排布的试件在冲击压缩的过程中表现出独特的颈缩现象。此结论将为蜂窝材料微结构的动力学优化设计提供指导和依据。  相似文献   

9.
曲壁蜂窝具有负刚度特性,可以在大变形过程中吸收能量、抗冲击,并且在冲击过后可以自我恢复而不像传统蜂窝被压溃。本文将曲梁构成的负刚度蜂窝作为芯层,建立夹层板的动力学模型;推导出了曲壁负刚度蜂窝胞元的等效弹性参数,将其周期性排列为蜂窝芯,应用Reddy高阶剪切变形理论、Von-Karman大变形关系和Hamilton原理推导了负刚度蜂窝夹层板的非线性动力学方程;应用Navier法计算了四边简支边界条件下的固有频率。并利用有限元软件ABAQUS建立模型,计算固有频率,与理论计算结果进行比较,结果显示二者的计算结果具有较好的一致性,验证了芯层等效弹性参数及模型的有效性。探讨了在蜂窝胞元具有较高吸能情形下,夹层板在不同芯层厚度、不同芯厚比以及不同胞元曲壁厚度时的固有频率的变化特性。  相似文献   

10.
Theoretical analysis and numerical simulation methods were used to study the in-plane crushing behavior of single-cell structures and regular and composite honeycombs. Square, hexagonal, and circular honeycombs were selected as honeycomb layers to establish composite honeycomb models in the form of composite structures and realize the complementary advantages of honeycombs with type I and type II structures. The effects of honeycomb layer arrangement, plastic collapse strength, relative density, and crushing velocity on the deformation mode, plateau stress, load uniformity, and energy absorption performance of the composite honeycombs were mainly considered. A semi-empirical formula for plateau stress and energy absorption rate per unit mass for the composite honeycombs was developed. The results showed that the arrangement mode of honeycomb layers is an important factor that affects their mechanical properties. Appropriately selecting the arrangement of honeycomb layers and the proportion of honeycomb layers with different structures in a composite honeycomb can effectively improve its load uniformity and control the magnitude of plateau stress and energy absorption capacity.  相似文献   

11.
铝蜂窝结构单向压缩、失稳和破坏机制研究   总被引:10,自引:2,他引:8  
王飞  李剑荣  虞吉林 《力学学报》2001,33(6):741-748
采用结构代表胞元模型数值模拟了在没相对密度范围的单型铝蜂窝结构在单向压缩过程中的变形、失稳和破坏现象。我们推广了转角刚度方法,并结合数值模拟结果分析了结构失稳和破坏的三种不同特征及相应 拗观力学机制,计算了结构代表胞元开始失稳分岔时的宏观应力σT,其值与有限元数值计算和实验得到的结构宏观极限应力σu一致吻合。  相似文献   

12.
针对传统蜂窝共面和异面承载能力差距太大的问题,提出了胞壁弓字形弯折蜂窝、层间组合蜂窝和折叠蜂窝等3种新型蜂窝,建立了新型蜂窝的有限元模型并分析了其变形模式和承载能力。结果表明,在相对密度一致的前提下,与传统正六边形蜂窝相比,这3种新构型蜂窝均缩小了共面和异面方向承载能力的差距。其中胞壁弓字形弯折蜂窝的共面/异面承载比提高了21.3倍;层间组合蜂窝两个共面方向承载能力悬殊,承载能力更强的共面方向与异面的承载比值提高了42倍;折叠蜂窝则提高了21.3倍。研究结果可以为抗多向冲击载荷作用下的蜂窝结构设计提供新思路和参考。  相似文献   

13.
通过实验和数值模拟方法系统研究了单胞壁开孔金属多级类蜂窝与双胞壁开孔金属多级类蜂窝的压溃行为. 重点分析了试件尺寸、开孔位置、孔偏距和孔梯度等因素对多级类蜂窝力学性能的影响. 结果表明,多级类蜂窝的压溃过程可分为3个阶段:弹性变形、屈曲变形以及密实;单胞壁开孔多级类蜂窝的压溃过程趋向于渐近内凹压溃,而双胞壁开孔多级类蜂窝趋向于轴向压溃;试件尺寸对多级类蜂窝的力学行为有明显的影响,当胞元数达到一定数目时,其力学性能几乎与蜂窝胞元数无关. 单胞壁开孔多级类蜂窝的峰值应力大于双胞壁开孔多级类蜂窝的峰值应力,但其平均压溃应力小于双胞壁开孔多级类蜂窝的平均压溃应力;与传统蜂窝相比,蜂窝胞壁开孔设计降低了蜂窝材料的比吸能;孔偏距的存在导致单胞壁开孔多级类蜂窝的峰值应力降低,但随着孔偏距的增加其平均压溃应力呈先减低后增加趋势;多梯度孔设计对多级类蜂窝材料的力学性能有重要影响,与均匀孔多级类蜂窝相比,正梯度孔分布设计降低了多级类蜂窝峰值应力,但提高了其平均压溃应力;多梯度孔分布设计对多级类蜂窝的峰值应力和平均压溃应力影响不大.   相似文献   

14.
通过对胞壁随机移除的蜂窝结构动态变形过程的有限元模拟,分析了随机缺陷对蜂窝 结构变形模式的影响,得到蜂窝结构在两个加载方向上的变形模式图及不同模式间转换的临 界速度. 对含缺陷蜂窝结构平台应力的研究发现,当变形模式为过渡模式或动态模式时结构 平台应力与冲击速度的平方成线性关系. 相同密度下,低缺陷蜂窝结构的平台应力在由过渡 模式向动态模式转变的临界速度附近高于规则蜂窝结构,较高的随机缺陷则使蜂窝结构的平 台应力在由准静态模式向过渡模式转变的临界速度附近显著下降. 关键词:多孔材料,蜂窝,缺陷,平台应力,有限元分析  相似文献   

15.
This paper presents the test results under quasi-static and impact loadings for a series of aluminum honeycombs (3003 and 5052 alloys) of different cell sizes, showing significantly different enhancements of the crushing pressure between 3003 honeycombs and the 5052 ones. A comprehensive numerical investigation with rate insensitive constitutive laws is also performed to model the experimental results for different cell size/wall thickness/base material, which suggests that honeycomb crushing pressure enhancement under impact loading is mostly due to a structural effect.Such simulated tests provide detailed local information such as stress and strain fields (in the cell wall) during the whole crushing process of honeycombs. A larger strain (in the cell wall) under impact loading than for the quasi-static case before each successive folding of honeycombs is observed, because of the lateral inertia effect. Thus, differences of the ratios of the stress increase due to strain hardening over the yield stress between 3003 and 5052 alloys lead to the different enhancements of crushing pressure. This result illustrates that the lateral inertia effect in the successive folding of honeycombs is the main factor responsible for the enhancement of the crushing pressure under impact loading.  相似文献   

16.
Nitinol (NiTi) shape memory alloy honeycombs, fabricated in low densities using a new brazing method [Grummon, D., Shaw, J., Foltz, J., 2006. Fabrication of cellular shape memory alloy materials by reactive eutectic brazing using niobium. Materials Science and Engineering A 438–440, 1113–1118], recently demonstrated enhanced shape memory and superelastic properties [Shaw, J. A., Grummon, D. S., Foltz, J., 2007b. Superelastic NiTi honeycombs: Fabrication and experiments. Smart Materials and Structures 16, S170–S178] by exploiting kinematic amplification of thin-walled deformations. The realization of such adaptive, light-weight cellular structures opens interesting possibilities for design and novel applications. This paper addresses the consequent need for design and simulation tools for engineers to make effective use of such structures by, as a first step, analyzing the multi-scale stability aspects of the superelastic behavior of a particular hexagonal, thin-walled, SMA honeycomb under in-plane compression. An in-depth parameter study is performed of the influence of different material laws on the behavior of honeycombs of finite and infinite extent with perfect and imperfect initial geometries. A finite element-based simulation is presented that credibly captures the behavior seen in experiments.  相似文献   

17.
Based on the cells’ collapse mechanisms of the hexagonal honeycombs revealed from the numerical simulations under the low-velocity impact, an analytical model is established to deduce the crushing strength of the honeycomb and the stress at the supporting end both as functions of impact velocity, cell size, cell-wall angle, and the mechanical properties of the base material. The results show that the honeycomb’s crushing strength increases with the impact velocity, while the supporting stress decreases with the increase of the impact velocity. Combining with the dynamic predictions under the high-velocity impact in our previous work (Hu and Yu, 2010), the crushing strength of the honeycombs can be analytically predicted over wide range of crushing velocities. The analytical expression of the critical velocity is also obtained, which offers the boundary for the application of the functions of the honeycomb’s crushing strength under the low-velocity and the high-velocity impacts. All of the analytical predictions are in good agreement with the numerical simulation results.  相似文献   

18.
Introducing hierarchy into structures has been credited with improving elastic properties and damage tolerance. Specifically, adding hierarchical sub-structures to honeycombs, which themselves have good-density specific elastic and energy-absorbing properties, has been proposed in the literature. An investigation of the elastic properties and structural hierarchy in honeycombs was undertaken, exploring the effects of adding hierarchy into a range of honeycombs, with hexagonal, triangular or square geometry super and sub-structure cells, via simulation using finite elements. Key parameters describing these geometries included the relative lengths of the sub- and super-structures, the fraction of mass shared between the sub- and super-structures, the co-ordination number of the honeycomb cells, the form and extent of functional grading, and the Poisson’s ratio of the sub-structure. The introduction of a hierarchical sub-structure into a honeycomb, in most cases, has a deleterious effect upon the in-plane density specific elastic modulus, typically a reduction of 40 to 50% vs a conventional non-hierarchical version. More complex sub-structures, e.g. graded density, can recover values of density specific elastic modulus. With careful design of functionally graded unit cells it is possible to exceed, by up to 75%, the density specific modulus of conventional versions. A negative Poisson’s ratio sub-structure also engenders substantial increases to the density modulus versus conventional honeycombs.  相似文献   

19.
基于分形的泡沫金属细观结构与尺寸效应研究   总被引:2,自引:1,他引:1  
提出采用分形理论对泡沫金属的细观结构及尺寸效应进行研究的方法. 针对一系列具有不同相对密度和细观结构的泡沫铝,证明了其细观结构在一定尺度内符合分形特征,比较了小岛分维、计盒分维和信息分维等算法对泡沫金属分形表征的适用性,分析了细观结构特征对分维的影响. 结合推广的Sierpinski垫片模型研究了泡沫铝的屈服强度与分维的联系,建立了泡沫铝屈服强度的尺寸效应模型. 研究结果表明,由于引入了表征细观结构特征的分形维数,该模型除能表征屈服强度随试样尺寸的变化规律外,还在一定程度上直接反映了泡沫金属细观结构特征对力学性能的影响.   相似文献   

20.
We investigated the mechanical behavior of two-dimensional hierarchical honeycomb structures using analytical, numerical and experimental methods. Hierarchical honeycombs were constructed by replacing every three-edge vertex of a regular hexagonal lattice with a smaller hexagon. Repeating this process builds a fractal-appearing structure. The resulting isotropic in-plane elastic properties (effective elastic modulus and Poisson’s ratio) of this structure are controlled by the dimension ratios for different hierarchical orders. Hierarchical honeycombs of first and second order can be up to 2.0 and 3.5 times stiffer than regular honeycomb at the same mass (i.e., same overall average density). The Poisson’s ratio varies from nearly 1.0 (when planar ‘bulk’ modulus is considerably greater than Young’s modulus, so the structure acts ‘incompressible’ for most loadings) to 0.28, depending on the dimension ratios. The work provides insight into the role of structural organization and hierarchy in regulating the mechanical behavior of materials, and new opportunities for developing low-weight cellular structures with tailorable properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号