首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We show that for a C1-dynamical system (A, G, α) with G discrete (abelian) the Connes spectrum Γ(α) is equal to G? if and only if every nonzero closed ideal in G × αA has a nonzero intersection with A. Denote by GJ the closed subgroup of G that leaves fixed the primitive ideal J of A. We show for a general group G that if all isotropy groups GJ are discrete, then GXαA is simple if and only if A is G-simple and Γ(α) = G?. This result is applicable not only when G is discrete but also when G?R or G?T provided that A is not primitive. Specializing to single automorphisms (i.e., G=Z) we show that if (the transposed of) α acts freely on a dense set of points in A?, then Λ(α)=T. The converse is only proved when A is of type I.  相似文献   

2.
Let I be an ideal, and let f = {Kn|n ≥ 0 } be a filtration of the Noetherian ring R, such that InKn for all n ≥ 0. We study when the Rees ring R(f) is either finite or integral over the Rees ring R(I), for two types of filtrations f which have recently drawn interest. If I and J are ideals in R, and if m(n) is the least power of J such that (In : Jm(n) + 1), we show that the function m(n) is eventually non-decreasing. For J regular, we characterize when it is eventually constant.  相似文献   

3.
4.
We regard a graph G as a set {1,…, v} together with a nonempty set E of two-element subsets of {1,…, v}. Let p = (p1,…, pv) be an element of Rnv representing v points in Rn and consider the realization G(p) of G in Rn consisting of the line segments [pi, pj] in Rn for {i, j} ?E. The figure G(p) is said to be rigid in Rn if every continuous path in Rnv, beginning at p and preserving the edge lengths of G(p), terminates at a point q ? Rnv which is the image (Tp1,…, Tpv) of p under an isometry T of Rn. We here study the rigidity and infinitesimal rigidity of graphs, surfaces, and more general structures. A graph theoretic method for determining the rigidity of graphs in R2 is discussed, followed by an examination of the rigidity of convex polyhedral surfaces in R3.  相似文献   

5.
Let 1 < p < ∞ with p ≠ 2. Let G denote one of the groups Tn, Rn, or Zn. We show that only entire functions operate in certain algebras of multipliers on Lp(G).  相似文献   

6.
If Ω denotes an open subset of Rn (n = 1, 2,…), we define an algebra g (Ω) which contains the space D′(Ω) of all distributions on Ω and such that C(Ω) is a subalgebra of G (Ω). The elements of G (Ω) may be considered as “generalized functions” on Ω and they admit partial derivatives at any order that generalize exactly the derivation of distributions. The multiplication in G(Ω) gives therefore a natural meaning to any product of distributions, and we explain how these results agree with remarks of Schwartz on difficulties concerning a multiplication of distributions. More generally if q = 1, 2,…, and ?∈OM(R2q)—a classical Schwartz notation—for any G1,…,GqG(σ), we define naturally an element ?G1,…,Gq∈G(σ). These results are applied to some differential equations and extended to the vector valued case, which allows the multiplication of vector valued distributions of physics.  相似文献   

7.
Exact couples are interconnected families of long exact sequences extending the short exact sequences usually derived from spectral sequences. This is exploited to give a long exact sequence connecting Amitsur cohomology groups H>n(SR, U) (where U means the multiplicative group) and Hn(SR, Pic) and a third sequence of groups Hn(J), for every faithfully flat commutative R-algebra S. This same sequence is derived in another way without assuming faithful flatness and Hn(J) is identified explicitly as a certain subquotient of a group of isomorphism classes of pairs (P, α) with P a rank one, projective Sn-module and α an isomorphism from the coboundary of P (inPicSn + 1) toSn + 1. (Here Sn denotes repeated tensor product of S over R.) This last formulation allows us to construct a homomorphism of the relative Brauer group B(SR) to H2(J) which is a monomorphism when S is faithfully flat over R, and an isomorphism when some S-module is faithfully projective over R. The first approach also identifies H2(J) with Ker[H2(R, U)→H2(S, U)], where H2(R, U) denotes the ordinary, Grothendieck cohomology (in the étale topology, for example).  相似文献   

8.
Suppose G is a finite group of complex n × n matrices, and let RG be the ring of invariants of G: i.e., those polynomials fixed by G. Many authors, from Klein to the present day, have described RG by writing it as a direct sum Σδj=1 ηjC1 ,…, θn]. For example, if G is a unitary group generated by reflections, δ = 1. In this note we show that in general this approach is hopeless by proving that, for any ? > 0, the smallest possible δ is greater than | G |n-1-? for almost all primitive groups. Since for any group we can choose δ ? | G |n-1, this means that most primitive groups are about as bad as they can be. The upper bound on δ follows from Dade's theorem that the θi can be chosen to have degrees dividing | G |.  相似文献   

9.
For a graph G, let ?(G) denote the maximum number k such that G contains a circuit with k diagonals.Theorem. For any graph G with minimum valencyn? 3, ?(G) ? 12 (n+1)(n-2).If the equality holds and G is connected, then either G is isomorphic to Kn+1 or G is separable and each of its terminal blocks is isomorphic to Kn+1, or Kn+1 with one edge subdivided.  相似文献   

10.
We find the automorphisms and the spectra of several different topological convolution algebras of C-functions on the real line. Starting with the convolution algebra of compactly supported C-functions, equipped with the usual LF-topology, we define a corresponding convolution algebra of C-functions of arbitrarily fast exponential decay at ∞; and convolution algebras of a given finite degree r of exponential decay at ∞. These algebras may be described topologically as “hyper Schwartz spaces.” With a natural Frechet topology, which we define, they get a structure as locally m-convex algebras. The continuous automorphisms and spectra of these algebras are described completely. We show that the algebra of C-functions of infinitly fast exponential decay at ∞, H J, on the one hand, and the algebra of C-functions of only a finite degree e?r¦x¦ decay at ∞, Jr0, on the other hand, have quite different automorphisms, although H J = ∩rJr0. As an application, we show that the conformal group is canonically represented as the full group of automorphisms of Jr0, and that this representation does not extend to a representation on the Banach algebra L1(R).  相似文献   

11.
Let H be a complex Hilbert space, P+ an orthogonal projection on H, and P? the complementary projection. If G is any symmetrically normed ideal in the ring of bounded operators on H, then we consider the group of unitary operators on H such that P+UP?and P?UP+ lie in G. When G is the Hilbert-Schmidt class, these unitaries define automorphisms of the C1-algebra b of the canonical anticommutation relations over H which are implementable in the representation of b determined by P?. We investigate the structure of the group U, proving in particular that it has infinitely many connected components, Uk, labelled by the Fredholm index of P+UP+. The connected component of the identity, U0, is generated by unitaries of the form exp(iA), with A self-adjoint and P+AP? in G. Finally we consider an application of these results to two dimensional field theory, showing in particular that the charge and chiral charge quantum numbers arise as the Fredholm indices of P±UP± for certain unitary U on L2(R, C2)  相似文献   

12.
For finite graphs F and G, let NF(G) denote the number of occurrences of F in G, i.e., the number of subgraphs of G which are isomorphic to F. If F and G are families of graphs, it is natural to ask then whether or not the quantities NF(G), FF, are linearly independent when G is restricted to G. For example, if F = {K1, K2} (where Kn denotes the complete graph on n vertices) and F is the family of all (finite) trees, then of course NK1(T) ? NK2(T) = 1 for all TF. Slightly less trivially, if F = {Sn: n = 1, 2, 3,…} (where Sn denotes the star on n edges) and G again is the family of all trees, then Σn=1(?1)n+1NSn(T)=1 for all TG. It is proved that such a linear dependence can never occur if F is finite, no FF has an isolated point, and G contains all trees. This result has important applications in recent work of L. Lovász and one of the authors (Graham and Lovász, to appear).  相似文献   

13.
For a matrix ARn × n, it is shown that strict positive invariance of a proper cone C ? Rn (that is, etAC/{0} ? int C ?t 0) implies the existence of a certain direct sum decomposition of Rn into A-invariant subspaces. Our results lead to a characterization of the set of initial points which give rise to solution curves that reach S, under the differential equation ? = Ax. Also given is an application in stability theory.  相似文献   

14.
《Advances in Mathematics》1985,56(3):238-282
Let gn be the Lie algebra gln(C), let S(gn) be the symmetric algebra of gn, and let T(gn) be the tensor algebra of gn. In a recent paper, R. K. Gupta studied certain sequences of representations R = (Rn)n = 1, where Rn is a representation of gn. These sequences have the property that every irreducible representation occurring in S(gn) is in exactly one of these sequences. Fixing f, she considers s(R, f) which is the limit on n of the multiplicity of Rn in Sf(gn), the fth-graded piece of S(gn). She and R. P. Stanley independently showed that the limit s(R, f) exists and is given by an amazingly elegant formula. They call s(R, f) the stable multiplicity of Rn in Sf(gn). In this paper, an entirely different approach is used to extend the above result in several directions. Appropriately defined sequences R for all of the classical Lie algebras gn are studied, and a simple formula for the stable multiplicity m(R), ψ, f, g) of Rn in the ψ-isotypic component of Tf(gn), where ψ is any irreducible character of the symmetric group tSf, is obtained. As in the work of Gupta and Stanley, the expressions for m(R), ψ, f, g) are amazingly simple. Special cases include the stable decomposition of the tensor algebra, the symmetric algebra and the exterior algebra of gn. As a byproduct of our proof, a “stable” decomposition of every isotypic component of T(gn) is obtained. This combinatorial decomposition is in some sense a generalization of Kostant's decomposition of S(gn) into direct sum of the harmonics and the ideal generated by the invariants of positive degree. To be precise, for f <n the combinatorial decomposition of Tf(gn) projects onto Kostant's decomposition of Sf(gn).  相似文献   

15.
Let Ω be an arbitrary open subset of Rn of finite positive measure, and assume the existence of a subset Λ ? Rn such that the exponential functions eλ = exp i(λ1x1 + … + λnxn), λ = (λ1,…, λn) ∈ Λ, form an orthonormal basis for L2(Ω) with normalized measure. Assume 0 ∈ Λ and define subgroups K and A of (Rn, +) by K = Λ0 = {γ ∈ Rn:γ·λ ∈ 2πZ}, A = {a ∈ Rn:Uam U1a = m}, where Ut is the unitary representation of Rn on L2(Ω) given by Ute = eitλeλ, tRn, λ ∈ Λ, and where m is the multiplication algebra of L(Ω) on L2. Assume that A is discrete. Then there is a discrete subgroup D ? A of dimension n, a fundamental domain D for D, and finite sets of representers RΛ, RΓ, RΩ, each containing 0, RΛ for AK in K0, and RΩ for AK in A such that Ω is disjoint union of translates of D: Ω = ∪a∈RΩ (a + D), neglecting null sets, and Λ = RΛD0. If RΓ is a set of representers for DA in D, then Γ = RΓK is a translation set for Ω, i.e., Ω ⊕ Γ = Rn, direct sum, (neglecting null sets). The case A = Rn corresponds to Ω = D, Λ = D0 and Γ = K. This last case corresponds in turn to a function theoretic assumption of Forelli.  相似文献   

16.
Let Ω denote a connected and open subset of Rn. The existence of n commuting self-adjoint operators H1,…, Hn on L2(Ω) such that each Hj is an extension of i∂∂xj (acting on Cc(Ω)) is shown to be equivalent to the existence of a measure μ on Rn such that f → \̂tf (the Fourier transform of f) is unitary from L2(Ω) onto Ω. It is shown that the support of μ can be chosen as a subgroup of Rn iff H1,…, Hn can be chosen such that the unitary groups generated by H1,…, Hn act multiplicatively on L2(Ω). This happens iff Ω (after correction by a null set) forms a system of representatives for the quotient of Rn by some subgroup, i.e., iff Ω is essentially a fundamental domain.  相似文献   

17.
Given a differential polynomial P(D) in Rn with constant coefficients, consider the functional dimension dfN of the space N = {uC(Rn):P(D)u = 0} endowed with the topology of uniform convergence on compact subsets of Rn. If P(D) is elliptic then dfN = n, by a theorem of Y. Kōmura. We prove the converse: If dfN = n then the differential polynomial P(D) must be elliptic.  相似文献   

18.
If X1,…,Xn are independent identically distributed Rd-valued random vectors with probability measure μ and empirical probability measure μn, and if a is a subset of the Borel sets on Rd, then we show that P{supAan(A)?μ(A)|≥ε} ≤ cs(a, n2)e?2n2, where c is an explicitly given constant, and s(a, n) is the maximum over all (x1,…,xn) ∈ Rdn of the number of different sets in {{x1…,xn}∩A|Aa}. The bound strengthens a result due to Vapnik and Chervonenkis.  相似文献   

19.
Let B(H) be the bounded operators on a Hilbert space H. A linear subspace R ? B(H) is said to be an operator system if 1 ?R and R is self-adjoint. Consider the category b of operator systems and completely positive linear maps. R ∈ C is said to be injective if given A ? B, A, B ∈ C, each map AR extends to B. Then each injective operator system is isomorphic to a conditionally complete C1-algebra. Injective von Neumann algebras R are characterized by any one of the following: (1) a relative interpolation property, (2) a finite “projectivity” property, (3) letting Mm = B(Cm), each map RN ? Mm has approximate factorizations RMnN, (4) letting K be the orthogonal complement of an operator system N ? Mm, each map MmK → R has approximate factorizations MmK → Mn → R. Analogous characterizations are found for certain classes of C1-algebras.  相似文献   

20.
This note will concern properly discontinuous actions of subgroups in real algebraic groups on contractible manifolds. Let (π,X,ρ) be such an action, where ρ:πDiff(X) is a homomorphism. We assume that ? extends to a smooth action of a real algebraic group G containing π. If such π has a nontrivial radical (i.e., unique maximal normal solvable subgroup), then we can apply the method of Seifert construction [14],[17] to yield that the quotient π\X supports the structure of an injective Seifert fibering with typical (resp. exceptional) fiber diffeomorphic to a solv (resp. infrasolv)-manifold (when π acts freely). When G is an amenable algebraic group, we can say about a uniqueness property for such actions. Namely, let (πi, Xi, ρi) be actions as above (i= 1,2). Then, given an isomorphism f of π1 onto ?2, there is a diffeomorphism h: X1X2 such that h(ρ1(r)x)=ρ2(f(r)h(x).As an application, we try to decide the structure of affine motions of some euclidean space Rn. First we verify the conjecture of [17, 4 5], i.e., a compact complete affinely flat manifold admits a maximal toral action if its fundamental group has a nontrivial center. Second, a compact complete affinity flat manifold whose fundamental group is virtually polycyclic supports the structure of an infrasolvmanifold. This structure varies depending on its solvable kernel (if it is abelian or nilpotent, it must be a euclidean space form or an infranilmanifold respectively). If a group of the affine group A(n) acts properly discontinuously and with compact quotient of Rn, then it is called an affine crystallographic group. Finally, we can say so far as to a uniqueness property that two virtually polycyclic affine crystallographic groups are conjugate inside Diff(Rn) if they are isomorphic (cf.[8]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号