首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We study the expected number of interior vertices of degree i in a triangulation of a planar point set S, drawn uniformly at random from the set of all triangulations of S, and derive various bounds and inequalities for these expected values. One of our main results is: For any set S of N points in general position, and for any fixed i, the expected number of vertices of degree i in a random triangulation is at least γiN, for some fixed positive constant γi (assuming that N>i and that at least some fixed fraction of the points are interior).We also present a new application for these expected values, using upper bounds on the expected number of interior vertices of degree 3 to get a new lower bound, Ω(N2.4317), for the minimal number of triangulations any N-element planar point set in general position must have. This improves the previously best known lower bound of Ω(N2.33).  相似文献   

2.
Let α(k, p, h) be the maximum number of vertices a complete edge-colored graph may have with no color appearing more than k times at any vertex and not containing a complete subgraph on p vertices with no color appearing more than h times at any vertex. We prove that α(k, p, h) ≤ h + 1 + (k ? 1){(p ? h ? 1) × (hp + 1)}1h and obtain a stronger upper bound for α(k, 3, 1). Further, we prove that a complete edge-colored graph with n vertices contains a complete subgraph on p vertices in which no two edges have the same color if
(n3)>(p3)Σi=1t(ei2)
where ei is the number of edges of color i, 1 ≤ it.  相似文献   

3.
Let V={1,2,…,n}. A mapping p:VRr, where p1,…,pn are not contained in a proper hyper-plane is called an r-configuration. Let G=(V,E) be a simple connected graph on n vertices. Then an r-configuration p together with graph G, where adjacent vertices of G are constrained to stay the same distance apart, is called a bar-and-joint framework (or a framework) in Rr, and is denoted by G(p). In this paper we introduce the notion of dimensional rigidity of frameworks, and we study the problem of determining whether or not a given G(p) is dimensionally rigid. A given framework G(p) in Rr is said to be dimensionally rigid iff there does not exist a framework G(q) in Rs for s?r+1, such that ∥qi-qj2=∥pi-pj2 for all (i,j)∈E. We present necessary and sufficient conditions for G(p) to be dimensionally rigid, and we formulate the problem of checking the validity of these conditions as a semidefinite programming (SDP) problem. The case where the points p1,…,pn of the given r-configuration are in general position, is also investigated.  相似文献   

4.
We enumerate weighted simple graphs with a natural upper bound condition on the sum of the weight of adjacent vertices. We also compute the generating function of the numbers of these graphs, and prove that it is a rational function. In particular, we show that the generating function for connected bipartite simple graphs is of the form p1(x)/(1-x)m+1. For nonbipartite simple graphs, we get a generating function of the form p2(x)/(1-x)m+1(1+x)l. Here m is the number of vertices of the graph, p1(x) is a symmetric polynomial of degree at most m, p2(x) is a polynomial of degree at most m+l, and l is a nonnegative integer. In addition, we give computational results for various graphs.  相似文献   

5.
A graph is a pair (V, I), V being the vertices and I being the relation of adjacency on V. Given a graph G, then a collection of functions {fi}mn=1, each fi mapping each vertex of V into anarc on a fixed circle, is said to define an m-arc intersection model for G if for all x,y ? V, xly ? (∨i?m)(fi(x)∩fi(y)≠Ø). The circular dimension of a graph G is defined as the smallest integer m such that G has an m-arc intersection model. In this paper we establish that the maximum circular dimension of any complete partite graph having n vertices is the largest integer p such that 2p+p?n+1.  相似文献   

6.
We study the computational complexity of the vertex cover problem in the class of planar graphs (planar triangulations) admitting a plane representation whose faces are triangles. It is shown that the problem is strongly NP-hard in the class of 4-connected planar triangulations in which the degrees of vertices are of order O(log n), where n is the number of vertices, and in the class of plane 4-connected Delaunay triangulations based on the Minkowski triangular distance. A pair of vertices in such a triangulation is adjacent if and only if there is an equilateral triangle ?(p, λ) with pR2 and λ > 0 whose interior does not contain triangulation vertices and whose boundary contains this pair of vertices and only it, where ?(p, λ) = p + λ? = {xR2: x = p + λa, a ∈ ?}; here ? is the equilateral triangle with unit sides such that its barycenter is the origin and one of the vertices belongs to the negative y-axis. Keywords: computational complexity, Delaunay triangulation, Delaunay TD-triangulation.  相似文献   

7.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

8.
The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p1,p2,…,pn be positive integers and G be such a graph, V(G)=n. The thorn graph of the graph G, with parameters p1,p2,…,pn, is obtained by attaching pi new vertices of degree 1 to the vertex ui of the graph G, i=1,2,…,n. Graham conjectured that for any connected graphs G and H, f(G×H)≤f(G)f(H). We show that Graham’s conjecture holds true for a thorn graph of the complete graph with every by a graph with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H are the thorn graphs of the complete graphs with every .  相似文献   

9.
The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents anO(n 2) time sequential algorithm and anO(n 2/p+logn) time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, wherep andn represent respectively the number of processors and the number of vertices of the circular-arc graph.  相似文献   

10.
We are interested in the minimum time T(S) necessary for computing a family S = { < Si, Sj >: ? Si, Sj?Rp, (i, j) ?E } of inner products of order p, on a systolic array of order p × 2. We first prove that the determination of T(S) is equivalent to the partition problem and is thus NP-complete. Then we show that the designing of an algorithm which runs in time T(S) + 1 is equivalent to the problem of finding an undirected bipartite eulerian multigraph with the smallest number of edges, which contains a given undirected bipartite graph, and can therefore be solved in polynomial time.  相似文献   

11.
The eccentricitye(v) of a vertexv of a connected graphG is the maximum distance fromv among the vertices ofG. A nondecreasing sequencea 1,a 2, ...,a p of nonnegative integers is said to be an eccentric sequence if there exists a connected graphG of orderp whose vertices can be labelledv 1,v 2, ...,v p so thate(v i )=a i for alli. Several properties of eccentric sequences are exhibited, and a necessary and sufficient condition for a sequence to be eccentric is presented. Sequences which are the eccentricity sequences of trees are characterized. Some properties of the eccentricity sequences of self-complementary graphs are obtained. It is shown that the radius of a nontrivial self-complementary graph is two.  相似文献   

12.
A simple graph with n vertices is called Pi-connected if any two distinct vertices are connected by an elementary path of length i. In this paper, lower bounds of the number of edges in graphs that are both P2- and Pi-connected are obtained. Namely if i?12(n+1), then |E(G)|?((4i?5)/(2i?2))(n?1), and if i > 12(n+ 1), then |E(G)|?2(n?1) apart from one exeptional graph. Furthermore, extremal graphs are determined in the former.  相似文献   

13.
When we wish to compute lower bounds for the chromatic number χ(G) of a graph G, it is of interest to know something about the ‘chromatic forcing number’ fχ(G), which is defined to be the least number of vertices in a subgraph H of G such that χ(H) = χ(G). We show here that for random graphs Gn,p with n vertices, fχ(Gn,p) is almost surely at least (12?ε)n, despite say the fact that the largest complete subgraph of Gn,p has only about log n vertices.  相似文献   

14.
Let p = p(n) be a function of n with 0<p<1. We consider the random graph model ??(n, p); that is, the probability space of simple graphs with vertex-set {1, 2,…, n}, where two distinct vertices are adjacent with probability p. and for distinct pairs these events are mutually independent. Archdeacon and Grable have shown that if p2(1 ? p2) ?? 8(log n)4/n. then the (orientable) genus of a random graph in ??(n, p) is (1 + o(1))pn2/12. We prove that for every integer i ? 1, if n?i/(i + 1) «p «n?(i ? 1)/i. then the genus of a random graph in ??(n, p) is (1 + o(1))i/4(i + 2) pn2. If p = cn?(i?1)/o, where c is a constant, then the genus of a random graph in ??(n, p) is (1 + o(1))g(i, c, n)pn2 for some function g(i, c, n) with 1/12 ? g(i, c, n) ? 1. but for i > 1 we were unable to compute this function.  相似文献   

15.
Let R be a commutative ring with identity. Let Γ(R) denote the maximal graph corresponding to the non-unit elements of R, i.e., Γ(R) is a graph with vertices the non-unit elements of R, where two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In this paper, we have shown that, for any finite ring R which is not a field, Γ(R) is a Euler graph if and only if R has odd cardinality. Moreover, for any finite ring R ? R 1×R 2× · · · ×R n, where the R i is a local ring of cardinality p i αi for all i, and the p i’s are distinct primes, it is shown that Aut(Γ(R)) is isomorphic to a finite direct product of symmetric groups. We have also proved that clique(G(R)’) = χ(G(R)’) for any semi-local ring R, where G(R)’ denote the comaximal graph associated to R.  相似文献   

16.
The interval number i(G) of a graph G with n vertices is the lowest integer m such that G is the intersection graph of some family of sets I1,…,In with every Ii being the union of at most m real intervals. In this article a lower bound for i(G) is proved followed by some considerations about the construction of graphs that are critical with respect to the interval number.  相似文献   

17.
The interval number of a graph G, denoted i(G), is the least positive integer t for which G is the intersection graph of a family of sets each of which is the union of at most t closed intervals of the real line R. Trotter and Harary showed that the interval number of the complete bipartite graph K(m,n) is ?(mn + 1)(m + n)?. Matthews showed that the interval number of the complete multipartite graph K(n1,n2,…,np) was the same as the interval number of K(n1,n2) when n1 = n2 = ? = np. Trotter and Hopkins showed that i(K(n1,n2,…,np)) ≤ 1 + i(K(n1,n2)) whenever p ≥ 2 and n1n2≥ ? ≥np. West showed that for each n ≥ 3, there exists a constant cn so that if pcn,n1 = n2?n ?1, and n2 = n3 = ? np = n, then i(K(n1,n2,…,np) = 1 + i(K(n1, n2)). In view of these results, it is natural to consider the problem of determining those pairs (n1,n2) with n1n2 so that i(K(n2,…,np)) = i(K(n1,n2)) whenever p ≥ 2 and n2n3 ≥ ? ≥ np. In this paper, we present constructions utilizing Eulerian circuits in directed graphs to show that the only exceptional pairs are (n2 ? n ? 1, n) for n ≥ 3 and (7,5).  相似文献   

18.
19.
In their papers (Technical Report CS-TR 50, University of Central Florida, 1980; J. Combin. Theory Ser. B32 (1982), 90–94) Brigham and Dutton introduce the notion of (n : i)-chromatic numbers of a graph, a generalization of Stahl's nth chromatic numbers (J. Combin. Theory Ser. B20, (1976), 185–203). The (n : i)-chromatic number of a graph G, denoted by χni(G), is the smallest integer m such that each vertex of G can be colored with a set of n colors in {1, 2,…, m} in such a way that any two adjacent vertices have exactly i colors in common. Brigham and Dutton conjecture at the end of loc cit that for all integers n and i with 0 ≤ in ? 1, and for every graph G, χni+1(G) ≤ χni(G). We prove this conjecture in some special cases and disprove it in the general case.  相似文献   

20.
Vizing conjectured that γ(GH)≥γ(G)γ(H) for every pair G,H of graphs, where “” is the Cartesian product, and γ(G) is the domination number of the graph G. Denote by γi(G) the maximum, over all independent sets I in G, of the minimal number of vertices needed to dominate I. We prove that γ(GH)≥γi(G)γ(H). Since for chordal graphs γi=γ, this proves Vizing’s conjecture when G is chordal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号