首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For finite graphs F and G, let NF(G) denote the number of occurrences of F in G, i.e., the number of subgraphs of G which are isomorphic to F. If F and G are families of graphs, it is natural to ask then whether or not the quantities NF(G), FF, are linearly independent when G is restricted to G. For example, if F = {K1, K2} (where Kn denotes the complete graph on n vertices) and F is the family of all (finite) trees, then of course NK1(T) ? NK2(T) = 1 for all TF. Slightly less trivially, if F = {Sn: n = 1, 2, 3,…} (where Sn denotes the star on n edges) and G again is the family of all trees, then Σn=1(?1)n+1NSn(T)=1 for all TG. It is proved that such a linear dependence can never occur if F is finite, no FF has an isolated point, and G contains all trees. This result has important applications in recent work of L. Lovász and one of the authors (Graham and Lovász, to appear).  相似文献   

2.
Let K(n;r) denote the complete r-partite graph K(n, n,…, n). It is shown here that for all even n(r ? 1) ? 2, K(n;r) is the union of n(r ? 1)2 of its Hamilton circuits which are mutually edge-disjoint, and for all odd n(r ? 1) ? 1, K(n;r) is the union of (n(r ? 1) ? 1)2 of its Hamilton circuits and a 1-factor, all of which are mutually edge-disjoint.  相似文献   

3.
A set of n lines in the projective plane divides the plane into a certain number of polygonal cells. We show that if we insist that all of these cells be triangles, then there are at most 13n(n ? 1) + 4 ? 27n of them. We also observe that if no point of the plane belongs to more than two of the lines and n is at least 4, some of the cells must be either quadrangles or pentagons. We further show that for n ≧ 4, there is a set of n lines which divides the plane into at least 13n(n ? 3) + 4 triangles.  相似文献   

4.
5.
Let Km be the complete graph of order m. We prove that the cartesian sum Km+Kn can be decomposed into 12(m+n?2) hamiltonian cycles if m+n is even and into 12(m+n?3) hamiltonian cycles and a perfect matching if m+n is odd.  相似文献   

6.
It is shown that the interval number of a graph on n vertices is at most [14(n+1)], and this bound is best possible. This means that we can represent any graph on n vertices as an intersection graph in which the sets assigned to the vertices each consist of the union of at most [14(n+1)] finite closed intervals on the real line. This upper bound is attained by the complete bipartite graph K[n/2],[n/2].  相似文献   

7.
The number of crossing-free Hamiltonian circuits in planar drawings of Kn is studied. In particular, it is shown that for planar drawings of Kn, (1) there are drawings having as many as (320)·10[n3] such circuits and (2) no drawing contains more than 2·6n?2([n2])!  相似文献   

8.
9.
10.
Km,n is the complete bipartite graph with m and n vertices in its chromatic classes. G. Ringel has proved that the orientable genus of Km,n is equal to {(m ? 2)(n ? 2)4} if m ≥ 2 and n ≥ 2 and that its nonorientable genus is equal to {(m ? 2)(n ? 2)2} if m ≥ 3 and n ≥ 3. We give new proofs of these results.  相似文献   

11.
Two matching heuristics are presented. The hyper-greedy method runs in time O(n2log n) and produces a matching whose cost is at most 2log3(1.5n) times optimal. Graphs are given causing this method to achieve nearly this ratio. The factor of two method runs in time O(n2log K), where K is the maximum ratio of edge lengths in the graph, and never requires more than O(n3) time. The factor of two method produces a matching whose cost is at most max(4log2K, 4log2n) times optimal, plus lower-order terms. Graphs are given causing this method to achieve a ratio asymptotically equal to (log2n)2.  相似文献   

12.
If each edge of complete graph Kn is colored with one of k colors then it contains a triangle having two colors if k < 1 + n12. The result is best possible when n is the square of a prime.  相似文献   

13.
For a formal power series g(t) = 1[1 + ∑n=1hntn] with nonnegative integer coefficients, the compositional inverse f(t) = t · f(t) of g(t) = t · g(t) is shown to be the generating function for the colored planted plane trees in which each vertex of degree i + 1 is colored one of hi colors. Since the compositional inverse of the Euler transformation of f(t) is the star transformation [[g(t)]?1 ? 1]?1 of g(t), [2], it follows that the Euler transformation of f(t) is the generating function for the colored planted plane trees in which each internal vertex of degree i + 1 is colored one of hi colors for i > 1, and h1 ? 1 colors for i = 1.  相似文献   

14.
The nonorientable genus of K4(n) is shown to satisfy:
γ(K4(n))=2(n?1)2 for n ? 3
,
γ(K4(2))=3, γ(K4(1))=1
.  相似文献   

15.
A Lyapunov transformation is a linear transformation on the set Hn of hermitian matrices H ? Cn,n of the form LA(H) = A1H + HA, where A ?Cn,n. Given a positive stable A ?Cn,n, the Stein-Pfeffer Theorem characterizes those K ? Hn for which K = LB(H), where B is similar to A and H is positive definite. We give a new proof of this result, and extend it in several directions. The proofs involve the idea of a controllability subspace, employed previously in this context by Snyders and Zakai.  相似文献   

16.
In this paper we studied m×n arrays with row sums nr(n,m) and column sums mr(n,m) where (n,m) denotes the greatest common divisor of m and n. We were able to show that the function Hm,n(r), which enumerates m×n arrays with row sums and column sums nr(m,n) and mr(n,m) respectively, is a polynomial in r of degree (m?1)(n?1). We found simple formulas to evaluate these polynomials for negative values, ?r, and we show that certain small negative integers are roots of these polynomials. When we considered the generating function Gm,n(y) = Σr?0Hm,n(r)yr, it was found to be rational of degree less than zero. The denominator of Gm,n(y) is of the form (1?y)(m?1)(n?1)+3, and the coefficients of the numerator are non-negative integers which enjoy a certain symmetric relation.  相似文献   

17.
Let Kn= {x ? Rn: (x12 + · +x2n?1)12 ? xn} be the n-dimensional ice cream cone, and let Γ(Kn) be the cone of all matrices in Rnn mapping Kn into itself. We determine the structure of Γ(Kn), and in particular characterize the extreme matrices in Γ(Kn).  相似文献   

18.
Let H and K be symmetric linear operators on a C1-algebra U with domains D(H) and D(K). H is defined to be strongly K-local if ω(K(A)1K(A)) = 0 implies ω(H(A)1 H(A)) = 0 for A?D(H) ∩ D(K) and ω in the state space of U, and H is completely strongly K-local if Ω(K(A)1K(A))=0 implies Ω(H(A)1H(A))=0 for AD(H) ∩ D(K) and Ω in the state of U, and H is cpmpletely strongly K-local if H??n is K??n-local on U?Mn for all n ? 1, where 1n is the identity on the n × n matrices Mn. If U is abelian then strong locality and complete strong locality are equivalent. The main result states that if τ is a strongly continuous one-parameter group of 1-automorphisms of U with generator δ0 and δ is a derivation which commutes with τ and is completely strongly δ0-local then δ generates a group α of 1-automorphisms of U. Various characterizations of α are given and the particular case of periodic τ is discussed.  相似文献   

19.
The interval number of a graph G, denoted i(G), is the least positive integer t for which G is the intersection graph of a family of sets each of which is the union of at most t closed intervals of the real line R. Trotter and Harary showed that the interval number of the complete bipartite graph K(m,n) is ?(mn + 1)(m + n)?. Matthews showed that the interval number of the complete multipartite graph K(n1,n2,…,np) was the same as the interval number of K(n1,n2) when n1 = n2 = ? = np. Trotter and Hopkins showed that i(K(n1,n2,…,np)) ≤ 1 + i(K(n1,n2)) whenever p ≥ 2 and n1n2≥ ? ≥np. West showed that for each n ≥ 3, there exists a constant cn so that if pcn,n1 = n2?n ?1, and n2 = n3 = ? np = n, then i(K(n1,n2,…,np) = 1 + i(K(n1, n2)). In view of these results, it is natural to consider the problem of determining those pairs (n1,n2) with n1n2 so that i(K(n2,…,np)) = i(K(n1,n2)) whenever p ≥ 2 and n2n3 ≥ ? ≥ np. In this paper, we present constructions utilizing Eulerian circuits in directed graphs to show that the only exceptional pairs are (n2 ? n ? 1, n) for n ≥ 3 and (7,5).  相似文献   

20.
A simpler method for proving γ(Kn) = (n ? 3)(n ? 4)6 when n ≡ 1 (mod 12).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号