首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vanadium–silver bimetallic oxide cluster ions (VxAgyOz+; x=1–4, y=1–4, z=3–11) are produced by laser ablation and reacted with ethane in a fast‐flow reactor. A reflectron time of flight (Re‐TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO3+, V2Ag2O6+, V2Ag4O7+, V3AgO8+, V3Ag3O9+, and V4Ag2O11+ ions, in which the oxygen‐centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V2Ag2O6++C2H6 are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the VxAgyOz+ cluster ions. The reactivity can be well‐tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V–Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems.  相似文献   

2.
Vanadium–silicon heteronuclear oxide cluster cations were prepared by laser ablation of a V/Si mixed sample in an O2 background. Reactions of the heteronuclear oxide cations with methane in a fast‐flow reactor were studied with a time‐of‐flight (TOF) mass spectrometer to detect the cluster distribution before and after the reactions. Hydrogen abstraction reactions were identified over stoichiometric cluster cations [(V2O5)n(SiO2)m]+ (n=1, m=1–4; n=2, m=1), and the estimated first‐order rate constants for the reactions were close to that of the homonuclear oxide cluster V4O10+ with methane. Density functional calculations were performed to study the structural, bonding, electronic, and reactivity properties of these stoichiometric oxide clusters. Terminal‐oxygen‐centered radicals (Ot . ) were found in all of the stable isomers. These Ot . radicals are active sites of the clusters in reaction with CH4. The Ot . radicals in [V2O5(SiO2)1–4]+ clusters are bonded with Si rather than V atoms. All the hydrogen abstraction reactions are favorable both thermodynamically and kinetically. This work reveals the unique properties of metal/nonmetal heteronuclear oxide clusters, and may provide new insights into CH4 activation on silica‐supported vanadium oxide catalysts.  相似文献   

3.
The structure and reactivity toward molecular nitrogen of vanadium diperoxo complexes, as well as the influence of the protonation and coordination of trifluoroacetate on the reactivity, were studied using the density functional method. The most stable form of the starting complex is the ozonide [V(O3)O2]. The triplet state of the complex is formed with small energy expenses for electron transfer from the peroxo ligand to the vanadium atom to form VIV. The transfer of the O atom to the N2 molecule to form N2O is possible for several transition states. The nature of possible complexes and transition states retains upon protonation but the number of different structures increases depending on the ligand and the site of proton addition. Upon protonation the reactivity increases and the lowest activation barrier decreases from 27 to 20 kcal mol–1. The coordination of trifluoracetate anion also decreases the activation barrier for the intermolecular transfer of oxygen to the nitrogen molecule.  相似文献   

4.
The reactions of cerium–vanadium cluster cations CexVyOz+ with CH4 are investigated by time‐of‐flight mass spectrometry and density functional theory calculations. (CeO2)m(V2O5)n+ clusters (m=1,2, n=1–5; m=3, n=1–4) with dimensions up to nanosize can abstract one hydrogen atom from CH4. The theoretical study indicates that there are two types of active species in (CeO2)m(V2O5)n+, V[(Ot)2]. and [(Ob)2CeOt]. (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size‐dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2)m(V2O5)n+ clusters falls between those of (CeO2)2–4+ and (V2O5)1–5+ in terms of C?H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping.  相似文献   

5.
We have examined the reactivity and saturation of small gold clusters (cations, neutrals and anions) towards several molecules and find that specific small gold clusters exhibit a pronounced variation in their reactivity towards hydrogen, methane and oxygen. The reactivity not only depends strongly on cluster size but also on the cluster charge state. For example, small (n<15) gold cations react readily with D2, but no evidence of reaction is observed for the anions under our experimental conditions. Similar behavior is seen for methane. With oxygen only even atom (odd electron) anions are reactive, and Au 10 + is the only cation which exhibits evidence of reaction. The global features (small cluster cations reactive towards H2, CH4, but large ones not reactive, odd electron anions reactive towards O2) are qualitatively explained by appealing to a simple frontier orbital picture. The uptake of deuterium and methane on gold clusters also exhibits a pronounced size dependence with D/Au varying from a high of 3 for the dimer to zero for clusters containing more than 15 Au atoms. Comparison of the methane and deuterium saturation behavior leads us to suggest that methane is dissociated and bound as CH3 and H.  相似文献   

6.
Vanadium oxide clusters VxOyq (x≤8, q=0,±1) are classified according to the oxidation index (△=2y+q-5x) of each cluster. Density functional calculations indicate that clusters with the same oxidation index tend to have similar bonding characters, electronic structures, and reactivities. This general rule leads to the findings of new possible ground state struc-tures for V2O6 and V3O6+ clusters. This successful application of the classification method on vanadium oxide clusters proves that this method is very effective in studying the bonding properties of early transition metal oxide clusters.  相似文献   

7.
The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium‐doped vanadium cluster cations CeV2O7+ are generated by laser ablation, mass‐selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time‐of‐flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen‐atom transfer , 2) double oxygen‐atom transfer , and 3) C?C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7+, which gives rise to C?C bond cleavage of ethene. Neither CexOy± nor VxOy± alone possess the necessary topological and electronic properties to bring about such a reaction.  相似文献   

8.
Reactions of cooled, size-selected aluminum cluster ions (Aln+, n = 1–8) with oxygen have been studied at collision energies from 0.15 to 10.0 eV (center-of-mass) under single-collision conditions. With the exception of the atomic ion, all size clusters undergo exoergic reactions which result in extensive fragmentation of the metal cluster framework. Significant energy barriers are found for reaction of all clusters except the dimer. The barrier height increases with cluster size from Al3+ to Al7+, then drops for Al8+.  相似文献   

9.
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n– and VxOyCln– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln– and VxOyCl(L)(n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1–2)– and VxOy (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.   相似文献   

10.
Laser ablation of vanadium pentoxide (V2O5) powder produces VO3, V2O5, V3O7, V3O8, and V4O10 cluster ions which have subsequently been reacted with methyl isobutyrate, methyl methacrylate monomer and its dimer in the ion cell region of a Fourier transform ion cyclotron resonance mass spectrometer. Gas phase ion/molecule chemistry has revealed that reactivity decreases with increased mass of the vanadium oxide cluster anions. VO3, V2O5, and V3O7 ions react with the three reagents, methyl isobutyrate, methyl methacrylate and its dimer, respectively, either by addition of a whole reagent molecule or an associated fragment. All products formed are a result of parallel processes. V4O10 undergoes no reaction for reaction times of up to 500 s, while V3O8 adds a water molecule. Although the ions possess a net negative charge, the reactive site toward electron rich reagents such as methyl isobutyrate, methyl methacrylate and its dimer is the under-coordinated vanadium atom. This observation is supported by the lack of reactivity toward the studied reagents by those anions (V3O8 and V4O10) whose most likely stable structures contain fully coordinated vanadium atoms.  相似文献   

11.
Reactions of hexaniobate with vanadate in the presence of Ni2+, Zn2+, or Cu2+ have furnished three high‐nuclear vanadium cluster‐substituted heteropolyoxoniobates (HPNs): {Ni(en)3}5H{VVNb8VIV8O44} ? 9 H2O ( 1 ), (H2en)Na2[{Zn(en)2(Hen)}{Zn(en)2(H2O)}2{PNb8VIV8O44}] ? 11 H2O ( 2 ), and Na{Cu(en)2}3{[Cu(en)2]2[PNb8VIV8O44]} ? 11 H2O ( 3 ) (en=1,2‐diaminoethane). Their structures have been determined and characterized by single‐crystal X‐ray diffraction analysis, thermogravimetric analysis (TGA), and elemental analysis. Structural analysis has revealed that compounds 1 – 3 contain similar {V8}‐substituted [XVNb8VIV8O44]11? (X=P, V) clusters, obtained by inserting a {V8} ring into tetravacant HPN [XNb8O36]27?. To the best of our knowledge, compounds 1 – 3 represent the first high‐nuclear vanadium cluster‐substituted HPNs, and compound 1 is the largest vanadoniobate cluster yet obtained in HPN chemistry. Nickel and zinc cations have been introduced into HPNs for the first time, which might promise a more diverse set of structures in this family. Antitumor studies have indicated that compounds 1 and 2 exhibit high activity against human gastric cancer SGC‐7901 cells, SC‐1680 cells, and MG‐63 cells.  相似文献   

12.
In this work, the potential energy curves of several low-lying excited states of M+(H2O)n = 1-4 (M = Li and Na) clusters with one M─O bond, related to the stretching of their M─O bond, were calculated in the gas phase. The time-dependent density functional theory and direct-symmetry-adapted cluster-configuration interaction were used in this study separately. Theoretical calculations showed that the charge transfer occurred between M+ and (H2O)n in the excited clusters so that the neutral metal atom was obtained at the dissociation limit of the potential curves. The excited potential curves of clusters were also calculated in the presence of the electrostatic field of water (EFW), and it was found that the charge transfer was blocked in the presence of EFW. The effect of the size of the (H2O)n cluster on the shape of the excited potential curves was investigated to observe how the M─O bond was affected in the excited states depending on the (H2O)n size. It was found that the increase in the size of the (H2O)n cluster increased the number of bonding excited potential curves. The difference between the electron density of the excited and ground electronic states was calculated to see how the charge transfer was affected by the size of the (H2O)n cluster.  相似文献   

13.
Two new neutral Keggin-polyoxometalate derivatives: [{Co(2,2′-bipy)2(H2O)}2]–[PMoVI7MoV5O40(VIVO)2] (1) and [{Ni(phen)2(H2O)}2](H3O) [PMoVI10MoV2O40] · 4H2O (2) have been synthesized under hydrothermal conditions and characterized by i.r., t.g. analysis, x.p.s. spectra and single-crystal X-ray diffraction. In the case of (1), the polyoxoanion cluster [PMo12O40]8− is capped by two vanadium atoms via four bridging oxo groups on two opposite {Mo4O4} pits of the Keggin polyoxoanion. Two {Co (2,2′-bipy)2(H2O)} fragments are supported on the two vanadium atoms through two terminal oxygen atoms from two vanadium atoms. In (2), two {Ni(phen)2(H2O)}2+ moieties are linked to the molybdophosphate cluster [PMo12O40] core to form a neutral bimetallic cluster. Furthermore, through the linkages of ππ stacking interactions and hydrogen bond contacts, extended three-dimensional supramolecular networks in the solid of (1) and (2) were formed.  相似文献   

14.
Density functional theory (DFT) calculations are used to investigate the reaction mechanism of V3O8+C2H4. The reaction of V3O8 with C2H4 produces V3O7CH2+HCHO or V3O7+CH2OCH2 overall barrierlessly at room temperature, whereas formation of hydrogen‐transfer products V3O7+CH3CHO is subject to a tiny overall free energy barrier (0.03 eV), although the formation of the last‐named pair of products is thermodynamically more favorable than that of the first two. These DFT results are in agreement with recent experimental observations. The (Ob)2V(OtOt). (b=bridging, t=terminal) moiety containing the oxygen radical in V3O8 is the active site in the reaction with C2H4. Similarities and differences between the reactivities of (Ob)2V(OtOt). in V3O8 and the small VO3 cluster [(Ot)2VOt.] are discussed. Moreover, the effect of the support on the reactivity of the (Ob)2V(OtOt). active site is evaluated by investigating the reactivity of the cluster VX2O8, which is obtained by replacing the V atoms in the (Ob)3VOt support moieties of V3O8 with X atoms (X=P, As, Sb, Nb, Ta, Si, and Ti). Support X atoms with different electronegativities influence the oxidative reactivity of the (Ob)2V(OtOt). active site through changing the net charge of the active site. These theoretical predictions of the mechanism of V3O8+C2H4 and the effect of the support on the active site may be helpful for understanding the reactivity and selectivity of reactive O. species over condensed‐phase catalysts.  相似文献   

15.
Activation of N2 on anionic trimetallic V3−xTaxC4 (x=0–3) clusters was theoretically studied employing density functional theory. For all studied clusters, initial adsorption of N2 (end-on) on one of the metal atoms (denoted as Site 1) is transferred to an of end-on: side-on: side-on coordination on three metal atoms, prior to N2 dissociation. The whole reaction is exothermic and has no global energy barriers, indicating that the dissociation of N2 is facile under mild conditions. The reaction process can be divided into two processes: N2 transfer (TRF) and N−N dissociation (DIS). For V-series clusters, which has a V atom on Site 1, the rate-determining step is DIS, while for Ta-series clusters with a Ta on Site 1, TRF may be the rate-determining step or has energy barriers similar to those of DIS. The overall energy barriers for heteronuclear V2TaC4 and VTa2C4 clusters are lower than those for homonuclear V3C4 and Ta3C4, showing that the doping effect is beneficial for the activation and dissociation of N2. In particular, V−Ta2C4 has low energy barriers in both TRF and DIS, and it has the highest N2 adsorption energy and a high reaction heat release. Therefore, a trimetallic heteronuclear V-series cluster, V−Ta2C4, is suggested to have high reactivity to N2 activation, and may serve as a prototype for designing related catalysts at a molecular level.  相似文献   

16.
Whereas the cluster [Mo3S4(acac)3(py)3]+ ([ 1 ]+, acac=acetylacetonate, py=pyridine) reacts with a variety of alkynes, the cluster [W3S4(acac)3(py)3]+ ([ 2 ]+) remains unaffected under the same conditions. The reactions of cluster [ 1 ]+ show polyphasic kinetics, and in all cases clusters bearing a bridging dithiolene moiety are formed in the first step through the concerted [3+2] cycloaddition between the C?C atoms of the alkyne and a Mo(μ‐S)2 moiety of the cluster. A computational study has been conducted to analyze the effect of the metal on these concerted [3+2] cycloaddition reactions. The calculations suggest that the reactions of cluster [ 2 ]+ with alkynes feature ΔG values only slightly larger than its molybdenum analogue, however, the differences in the reaction free energies between both metal clusters and the same alkyne reach up to approximately 10 kcal mol?1, therefore indicating that the differences in the reactivity are essentially thermodynamic. The activation strain model (ASM) has been used to get more insights into the critical effect of the metal center in these cycloadditions, and the results reveal that the change in reactivity is entirely explained on the basis of the differences in the interaction energies Eint between the cluster and the alkyne. Further decomposition of the Eint values through the localized molecular orbital‐energy decomposition analysis (LMO‐EDA) indicates that substitution of the Mo atoms in cluster [ 1 ]+ by W induces changes in the electronic structure of the cluster that result in weaker intra‐ and inter‐fragment orbital interactions.  相似文献   

17.
The stability, infrared spectra and electronic structures of (ZrO2)n (n=3–6) clusters have been investigated by using density‐functional theory (DFT) at B3LYP/6‐31G* level. The lowest‐energy structures have been recognized by considering a number of structural isomers for each cluster size. It is found that the lowest‐energy (ZrO2)5 cluster is the most stable among the (ZrO2)n (n=3–6) clusters. The vibration spectra of Zr? O stretching motion from terminal oxygen atom locate between 900 and 1000 cm?1, and the vibrational band of Zr? O? Zr? O four member ring is obtained at 600–700 cm?1, which are in good agreement with the experimental results. Mulliken populations and NBO charges of (ZrO2)n clusters indicate that the charge transfers occur between 4d orbital of Zr atoms and 2p orbital of O atoms. HOMO‐LUMO gaps illustrate that chemical stabilities of the lowest‐energy (ZrO2)n (n=3–6) clusters display an even‐odd alternating pattern with increasing cluster size.  相似文献   

18.
BiV0.4Fe3IIIO(PO4)3 crystallizes with two Fe atoms (one on an inversion centre and one on a mirror plane) displaying octahedral geometry and a third Fe atom (on a mirror plane) with trigonal bipyramidal coordination. Fe atoms are seen in oxy­gen‐bridged chains. BiV atoms are found in the interstitial sites between these chains. Bi shows sevenfold coordination, with Bi—O distances between 2.357 (7) and 2.529 (6) Å.  相似文献   

19.
Observations on metastable peaks resulting from the unimolecular decomposition of ion clusters show that intensity variations as a function of cluster size can reveal the presence of stable cluster configurations. This technique has been used to confirm that (H2O)21H+ and (D2O)21D+ are stable ion clusters, and the method also provides evidence to suggest that Ar19+ is a particularly stable species.  相似文献   

20.
Theoretical near edge X-ray absorption fine structure (NEXAFS) spectra describing oxygen 1s core excitation have been evaluated for the differently coordinated oxygen species appearing near the V2O3(0001) surface with half metal layer VOV termination. Adsorption of oxygen above vanadium centers of the VOV terminated surface (OtVO termination) results in very strongly bound vanadyl oxygen, which has also been considered for core excitation in this study. The angle-resolved spectra are based on electronic structure calculations using ab initio density functional theory (DFT) together with model clusters. Experimental NEXAFS spectra for V2O3(0001) show a rather strong dependence of peak positions and relative intensities on the photon polarization direction. This dependence is well described by the present theoretical spectra and allows us to assign spectral details in the experiment to specific O 1s core excitations where final state orbitals are determined by the local binding environments of the differently coordinated oxygen centers. As a result, a combination of the present theoretical spectra with experimental NEXAFS data enables an identification of differently coordinated surface oxygen species at the V2O3(0001) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号