首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
 For the intermolecular interaction energies of ion-water clusters [OH(H2O) n (n=1,2), F(H2O), Cl(H2O), H3O+(H2O) n (n=1,2), and NH4 +(H2O) n (n=1,2)] calculated with correlation-consistent basis sets at MP2, MP4, QCISD(T), and CCSD(T) levels, the basis set superposition error is nearly zero in the complete basis set (CBS) limit. That is, the counterpoise-uncorrected intermolecular interaction energies are nearly equal to the counterpoise-corrected intermolecular interaction energies in the CBS limit. When the basis set is smaller, the counterpoise-uncorrected intermolecular interaction energies are more reliable than the counterpoise-corrected intermolecular interaction energies. The counterpoise-uncorrected intermolecular interaction energies evaluated using the MP2/aug-cc-pVDZ level is reliable. Received: 14 March 2001 / Accepted: 25 April 2001 / Published online: 9 August 2001  相似文献   

2.
In order to explore the isotope effect including the nuclear–electronic coupling and nuclear quantum effects under the one-particle approximation, we apply the dynamic extended molecular orbital (DEMO) method and energy component analysis to the hydrogen and lithium hydride isotope molecules. Since the DEMO method determines both electronic and nuclear wave functions simultaneously by variationally optimizing all parameters embedded in the basis sets, the virial theorem is completely satisfied and guarantees the relation of the kinetic and potential energies. We confirm the isotope effect on internuclear distances, nuclear and electronic wave functions, dipole moment, the polarizability, and each energy component. In the case of isotopic species of the hydrogen molecule, the total energy decreases from the H2 to the T2 molecule due to the stabilization of the nuclear–electronic potential component, as well as the nuclear kinetic one. In the case of the lithium hydride molecule, the energy lowering by replacing 6Li with 7Li is calculated to be greater than that by replacing H with D. This is mainly caused by the small destabilization of electron–electron and nuclear–nuclear repulsion in 7LiH compared to 6LiH, while the change in the repulsive components from 6LiH to 6LiD increases. Received: 24 March 1999 / Accepted: 5 August 1999 / Published online: 15 December 1999  相似文献   

3.
 The surface chemistry of oxides is relevant for many technological applications: catalysis, photoelectrolysis, electronic-device fabrication, prevention of corrosion, sensor development, etc. This article reviews recent theoretical works that deal with the surface chemistry of oxides. The account begins with a discussion of results for the adsorption of CO and NO on oxides, systems which have been extensively studied in the literature and constitute an ideal benchmark for testing the quality of different levels of theory. Then, systematic studies concerned with the behavior of adsorbied alkali metals and sulfur-containing molecules are presented. Finally, a correlation between the electronic and chemical properties of mixed-metal oxides is analyzed and basic principles for designing chemically active oxides are introduced. Advances in theoretical methods and computer capabilities have made possible a fundamental understanding of many phenomena associated with the chemistry of molecules on oxide surfaces. Still many problems in this area remain as a challenge, and the approximate nature of most theoretical methods makes necessary a close coupling between theory and experiment. Following this multidisciplinary approach, the importance of band-orbital interactions for the reactivity of oxide surfaces has become clear. Simple models based on band-orbital mixing can explain trends found for the interaction of many adsorbates with oxide surfaces. These simple models provide a conceptual framework for modifying or controlling the chemical activity of pure oxides and for engineering mixed-metal oxides. In this respect, theoretical calculations can be very useful for predicting the best ways for enhancing the reactivity of oxide systems and reducing the waste of time, energy and materials characteristic of an empirical design. Received: 21 June 2001 / Accepted: 8 October 2001 / Published online: 1 February 2002  相似文献   

4.
 Hybrid quantum mechanical (QM) and molecular mechanical (MM) potentials are becoming increasingly important for studying condensed-phase systems but one of the outstanding problems in the field has been how to treat covalent bonds between atoms of the QM and MM regions. Recently, we presented a generalized hybrid orbital (GHO) method that was designed to tackle this problem for hybrid potentials using semiempirical QM methods [Gao et al. (1998) J Phys Chem A 102: 4714–4721]. We tested the method on some small molecules and showed that it performed well when compared to the purely QM or MM potentials. In this article, we describe the formalism for the determination of the GHO energy derivatives and then present the results of more tests aimed at validating the model. These tests, involving the calculation of the proton affinities of some model compounds and a molecular dynamics simulation of a protein, indicate that the GHO method will prove useful for the application of hybrid potentials to solution-phase macromolecular systems. Received: 4 October 1999 / Accepted: 18 December 1999 / Published online: 5 June 2000  相似文献   

5.
The trans-bis(glycine)nickel(II) complex was synthesized, and the Fourier transform infrared spectra in the regions 4000-370 cm(-1) and 700-30 cm(-1) were measured. Band deconvolution analysis and the second derivative of the infrared spectrum were also performed. The determination of the geometrical structure in the trans position of the glycine ligands around Ni(II) for the trans-bis(glycine)nickel(II) complex as well as the vibrational assignment were assisted by RHF/6-311G and by Density Functional Theory calculations, DFT:B3LYP/6-31G and 6-311G basis sets. A full discussion of the framework vibrational modes was done using as criteria the geometry study of distorted structures generated for the vibrational modes. Incidentally, Normal Coordinate Analysis was carried out for the Ni(N)(2)(O)(2) structural fragment. The calculated DFT spectra in the high- and low-energy regions agree with the observed ones.  相似文献   

6.
史荣  王喜贵 《无机化学学报》2022,38(11):2275-2282
采用溶胶-凝胶法制备了LiBaPO4:Eu3+荧光粉,通过热重-差热分析(TG-DTA)、傅里叶变换红外(IR)光谱、X射线衍射(XRD)、透射电子显微镜(TEM)、荧光光谱对荧光粉的结构、发光性质进行表征。TG-DTA结果表明在700 ℃之后可形成LiBaPO4相。IR谱图证实了PO43-离子的存在。XRD结果表明:温度变化会引起衍射峰不同程度的劈裂;Eu3+掺杂浓度会对样品晶相有影响,掺杂浓度较小时样品出现杂相,随着掺杂浓度增加,样品为纯相六方晶系LiBaPO4。TEM结果表明随着浓度的增加,材料颗粒会发生一定程度的团聚。荧光结果表明:由于活化剂在不同温度下的晶体结构和配位环境的差异,制备的LiBaPO4:Eu3+在不同的退火温度下最佳激发波长不同,其主导的能级跃迁也有所差异,且Eu3+引起的浓度猝灭情况也随之而变。CIE计算结果表明,随着退火温度升高,样品色纯度逐渐变好。LiBaPO4:Eu3+可被394 nm长波紫外光有效激发,说明其在白光发光二极管领域有潜在的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号